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Preface

ICARIS 2006 is the fifth instance of a series of conferences dedicated to the
comprehension and the exploitation of immunological principles through their
translation into computational terms. All scientific disciplines carrying a name
that begins with “artificial” (followed by “life,” “reality,” “intelligence” or “im-
mune system”) are similarly suffering from a very ambiguous identity. Their axis
of research tries to stabilize an on-going identity somewhere in the crossroad of
engineering (building useful artifacts), natural sciences (biology or psychology—
improving the comprehension and prediction of natural phenomena) and the-
oretical computer sciences (developing and mastering the algorithmic world).
Accordingly and depending on which of these perspectives receives more sup-
port, they attempt at attracting different kinds of scientists and at stimulat-
ing different kinds of scientific attitudes. For many years and in the previous
ICARIS conferences, it was clearly the “engineering” perspective that was the
most represented and prevailed through the publications. Indeed, since the ori-
gin of engineering and technology, nature has offered a reserve of inexhaustible
inspirations which have stimulated the development of useful artifacts for man.
Biology has led to the development of new computer tools, such as genetic al-
gorithms, Boolean and neural networks, robots learning by experience, cellular
machines and others that create a new vision of IT for the engineer: parallel,
flexible and autonomous. In this type of informatics, complex problems are tack-
led with the aid of simple mechanisms, but infinitely iterated in time and space.
In this type of informatics, the engineer must resign to partly losing control if
he wishes to obtain something useful. The computer finds the solutions by brute
force trial and error, while the engineer concentrates on observing and indicating
the most promising directions for research.

Fifteen years ago, two groups of researchers (one from France at the insti-
gation of Varela and the other from the USA at the instigation of Perelson)
simultaneously bet that, like genetics or the brain, the immune system could
also unleash a stream of computational developments grounded on its mech-
anisms. The first group was more inspired by the endogenous network-based
regulatory aspects of the system. Like ecosystems or autocatalytic networks, the
immune system is composed of a connected set of cellular actors whose con-
centration varies in time according to the interactions with other members of
the network as well as through environmental impacts. This network shows an
additional plasticity since it is subject to structural perturbations through the
appearance and disappearance of these members. The most logical engineering
inspiration lay in the realm of distributed and very adaptive control together
with parallel optimization. The resulting controllers should keep a large degree
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of autonomy, an important emancipation with respect to the designer, a poten-
tiality slowly revealed through their interaction with the world and an identity
not predetermined but constantly in the making.

The second group concentrated all its attention on the way the immune sys-
tem treats and reacts to its exogenous impacts. It insisted in seeing the immune
system, first of all, as a pattern recognition or classifier system, able to separate
and to distinguish the bad from the good stimuli just on the basis of exogenous
criteria and a limited presentation of these stimuli. It successfully stimulated the
mainstream of engineering applications influenced by immunology: new meth-
ods of “pattern recognition,” “clustering” and “classification”. This vision of
immunology was definitely the most prevalent among immunologists and cer-
tainly the easiest to engineer and to render operational. Whether or not this
line of development offers interesting advantages as compared to more classical
techniques, less grounded in biology, the future will tell. However, some mem-
bers of this still modest community realized more and more that the time had
come to turn back to real immunology in order to assess these current lines of
research and to reflect on the possibility of new inspirations coming from novel
or so-far neglected immunological facts: network, homeostasis, danger, are words
appearing more and more frequently in the recent papers. Only a re-centering on
theoretical immunology and a shift from the engineering to the “modelling” per-
spective could allow this turning point. This is how we saw this year’s ICARIS,
as the right time to question the engineering avenues taken so far and to exam-
ine how well they really fit the way theoretical immunologists globally construe
what they study on a daily basis.

To consecrate this re-focusing, the organizers decided to invite four presti-
gious theoretical immunologists to present and debate their views, first among
themselves but equally with the ICARIS community: Melvin Cohn, Irun Co-
hen, Zvi Grossman, Antonio Coutinho. Additionally, they decided to place more
emphasis on the modeling approaches and favored in this conference proceed-
ings papers with a more “biological” than “engineering” flavor. Sixty papers
were submitted among which 34 were accepted and included in the proceedings.
More than for the previous ICARIS, the first half of the papers are about mod-
eling enterprises and the other half about engineering applications. We would
like to thank the members of the Program Committee who did the right job on
their fine selection of the papers and Jon Timmis for his very kind and precious
collaboration.

June 2006 Hugues Bersini and Jorge Carneiro
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Did Germinal Centers Evolve Under Differential
Effects of Diversity vs Affinity?

Jose Faro!2, Jaime Combadao!, and Isabel Gordo!
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2 Universidade de Vigo, Edificio de Ciencias Experimentais,

Campus As Lagoas-Marcosende, 36310 Vigo, Spain
jfaro@uvigo.es

Abstract. The classical view on the process of mutation and affinity
maturation that occurs in GCs assumes that their major role is to gen-
erate high affinity levels of serum Abs, as well as a dominant pool of high
affinity memory B cells, through a very efficient selection process. Here
we present a model that considers different types of structures where a
mutation selection process occurs, with the aim at discussing the evolu-
tion of Germinal Center reactions. Based on the results of this model, we
suggest that in addition to affinity maturation, the diversity generated
during the GC reaction may have also been important in the evolution to-
wards the presently observed highly organized structure of GC in higher
vertebrates.

1 Introduction

Vertebrates have evolved a complex immune system (IS) that efficiently con-
tributes to protect them from many infectious and toxic agents. To cope with
such large variety of agents the IS generates a large diversity of lymphocyte re-
ceptors. This occurs through various mechanisms activated during lymphocyte
development. The first one consists in the random recombination of relatively
few gene segments into a full variable (V) region gene of immunoglobulins(Ig)
heavy and light chains, allowing the formation of many different receptors [1].
In higher vertebrates (birds, mammals) the relevance of this mechanism for di-
versity generation in the primary B-cell repertoire varies with different species,
being followed in some of them by other mechanisms like V-region gene conver-
sion or somatic hypermutation (SHM) that act on rearranged V-region genes [2].
This initial repertoire is submitted to selection before B cells reach full maturity,
thus getting purged of overt self-reactivity [1].

During an immune response to a protein antigen (Ag) the SHM mechanism
is triggered in some of the responding, mature B cells. Most mutations are dele-
terious (decrease the antibody (Ab) affinity for Ag) or neutral, but a few may
increase the affinity [3]. This is followed by an increase of serum affinity starting

H. Bersini and J. Carneiro (Eds.): ICARIS 2006, LNCS 4163, pp. 1-8, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 J. Faro, J. Combadao, and I. Gordo

after about the peak of the immune response until it reaches a quasi-plateau
several weeks later [4]. This process, termed affinity maturation, implies that a
selection process for higher affinity Abs takes place during that time. In higher
vertebrates the SMH and selection processes take place at Germinal Centers
(GC) [2]. These are short-lived structures, generated within primary follicles of
secondary lymphoid tissue by migration of Ag-activated lymphocytes, and char-
acterized by intense proliferation and apoptosis of Ag-specific B cells. In contrast,
lower vertebrates do not generate GCs [2] so that SHM during immune responses
to protein Ags takes place more or less diffusely in lymphoid tissue. Correspond-
ingly in them the serum affinity during immune responses increases significantly
less than in higher vertebrates. This indicates a less efficient selection process,
currently attributed to their lack of GCs [2].

A higher rate affinity maturation process requires a more efficient (stronger)
selection than a poorer affinity maturation process. On the other hand, the
higher the efficiency the more specific the selected Abs will be, but the lower
the remaining diversity related to the triggering Ag. However, thinking in evo-
lutionary terms, keeping the diversity in the Ab repertoire seems at least as
important as having the ability to selectively expand B cells producing Abs with
higher specificity. For instance, while a ‘selection structure’ (i.e., GCs) has been
selected for in higher vertebrates, many lower vertebrates have life spans similar
to many higher vertebrates. Also, mutant mice that lack an enzyme essential for
the SHM process get strong intestinal inflammation due to massive infiltration
of normal anaerobic gut flora [5].

Because the more efficient the selection the less the diversity, and because of
the importance of both affinity maturation and diversity, a trade-off between
those two goals possibly emerged during the evolution of vertebrates in those
species endowed with the physiologic possibility to generate GC-like structures.
We hypothesize that such trade-off may have determined the size, life span,
organization, etc. of GCs. In order to approach this issue, we have developed
a simple stochastic/CA hybrid model that allows us to compare the degree of
affinity maturation and diversity generated in different scenarios, intended to
represent evolutionary stages of species with increasing GC size. In this model
the process of affinity maturation within GCs is formally equivalent to a pop-
ulation genetics model of the evolution of clonal populations under mutation
and selection. This allows us to put our findings in context with a number of
analytical results from population genetics.

2 The Model

A model of the immune response incorporating SHM and selection, in which
lymphoid tissue is represented by a 25 x 25 square grid with periodic bound-
ary conditions, was implemented in language C. In it B cells are assumed to be
distributed evenly in the small squares of the grid and are modeled as a large
population with many subpopulations of equal size named demes. More specif-
ically, each single square holds a deme of N4 B cells (thus the whole system
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contains Ny = Ny x 625 B cells). Individual B cells are defined by strings repre-
senting V-regions with 300 nucleotides in size. The processes of SHM /selection
take place only in particular demes named MS demes. Cells can migrate from
one deme to any of the 8 neighbour demes with probability m, (see arrows in
figure 1).

In each time step (generation) B cells within MS demes mutate in the V region
of their Igs with rate U per B cell per generation. The number of mutations
occurring per cell is a Poisson random variable with mean U. Once a mutation
occurs it can either decrease (with probability py) or increase (with probability
1 — p4) the affinity of targeted Abs.

Outside of the MS demes, mutation does not occur and all cells have the same
probability of survival. In the MS demes the probability of survival for each cell
is directly proportional to its fitness W;;, which depends on the affinity of its
Igs for the Ag. W;; corresponds to the probability of survival of a B cell with
1 mutations that decrease the affinity and j mutations that increase affinity. To
calculate the fitness of each B cell, we use the multiplicative fitness assumption
for the interaction between mutations. With this assumption the fitness of B
cells containing 7 low affinity and j high affinity mutations is calculated as:
Wi; = (1 + s)7(1 — sq)%, where s;, is the effect of mutations that lead to an
increase in affinity and sg is the effect of mutations that lead to a decrease in
affinity.

To understand how different degrees of ‘GC’ aggregation/organization could
affect the process of affinity maturation and the resulting diversity, five topolo-
gies were considered. These topologies are used to model different sizes of ‘GC’
represented by different areas where SHM and selection could take place. These
were meant to model the evolution of GC size along a phylogenetic scale, going
from vertebrates species where the SHM and affinity maturation did occur in less
structured lymphoid tissue, to current higher vertebrates where these processes
take place in finely organized GC structures. We have considered the following
topologies (in figure 1 an example of the grid corresponding to topology A3 is
shown): (i) topology A1 consists of 64 single, unconnected MS demes; (i) topol-
ogy A2 consists of 16 groups of 2 x 2 MS demes; (iii) topology A3 consists of
7 groups of 3 x 3 MS demes; (iv) topology A4 consists of 4 groups of 4 x 4 MS
demes; and (v) topology A5 consists of 1 group of 8 x 8 MS demes.

Each group of MS demes is placed at random in the grid. The simulations were
performed using the following set of parameter values. Each deme is assumed
to hold N4y = 100 B cells (this number is adjusted every generation, after the
migration process has occurred). Within MS demes the mutation parameters are
U = 0.3 and pg = 0.998, and the selection parameters, sq and s, were varied.
The migration rate was set to m, = 0.00625. This Monte-Carlo algorithm was
run for different periods of time. In particular, analyses of the time for the mean
affinity to approach the expected equilibrium were performed. To relate the
time steps in the algorithm with the time scale of present day GCRs, we assume
that B cells in the MS demes divide every 8 hours [3]. Thus 60 time steps in
the algorithm correspond to about 21 days, which is the average life of GCs
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Fig. 1. An example of the 25 x 25 grid with a possible A3 topology. The full squares
(MS demes) indicate the places where mutation and selection occur. Arrows indicate
the eight possible directions for a migration event.

in primary immune responses. In order to obtain a variance due to stochastic
events each simulation was repeated 20 times.

3 Results

3.1 Some Results from Genetics Population Theory

We first summarize some analytical results from population genetics that are
relevant to understand the results shown for this model of GC evolution. Let
us consider a large population of individuals (e.g., B cells) undergoing mutation
at rate Uy per individual per generation. Lets assume that every mutation has
a negative effect, decreasing the fitness (o< affinity) by an amount sg. Then,
after approximately 1/s4 generations (each constituting a cycle of mutation and
selection), the distribution of bad mutations in the population is Poisson with
mean Ug/sq. This means two things: first, if s4 is small it takes a lot of time to
achieve this distribution; second, when it is achieved it can have a very large mean
and variance. In the simulations s4; was around 10% the initial fitness so that
the equilibrium distribution was reached in a period shorter than the time of a
typical GC reaction of a primary immune response. Let a(t) be the mean number
of negative mutations at time t after the start of the SHM process, then the
distribution at time ¢ is Poisson with mean given by: a(t) = (1 — (1—s4)")Uq/sq
[6]. Population genetics theory also shows that, if the population is not very
large and/or sq is small, the equilibrium above is not stable and a continuous
accumulation of deleterious mutations can occur [7]. This is likely to happen if
the condition N x Exp(—Ugy/sq) is satisfied, where N is population size.

If positive (affinity increasing) mutations are allowed to occur at rate U, per
cell per generation then for U, < Uy the distribution of negative mutations
(decreasing affinity or deleterious) stays close to a Poisson [§].
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3.2 Average Affinity Increases with Aggregation Until a Plateau
Is Reached

We were interested in how ‘affinity’ (fitness) levels vary with the level of ag-
gregation, that is, how ‘affinity’ levels vary with the size of the structure where
the GCR occurs. Figure 2 shows the results for different values of the effect of
mutations that increase and decrease affinity and for different times of the GCR.
When considering short periods for the GCR, the average level of ‘affinity’ is low,
even lower than the germ-line level of ‘affinity’, which by definition is 1. But as
we consider longer periods, we observe that the level of affinity increases as the
size of the structures increase. In particular, given sufficient time, above a given
size of the structures, the level of affinity reaches a plateau. This qualitative
result is independent of the exact values of the selection parameters sq and sp.
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Fig. 2. Level of Ab affinity for increasing levels of aggregation at different times of the
GC reaction

The reasons for this behaviour are as follows. When the size of the (GC) structure
is small, the number of cells within each structure that are undergoing mutation
and selection is small, so the contribution of the stochastic effects to the process
is large. This means that, in order for a key mutation to overcome the effects of
drift, the increase in affinity of that mutation has to be extremely high. Otherwise,
most likely the mutant will be lost by chance. Thus, unless sy is very strong, for low
values of the aggregation the level of affinity is low. When the size of the aggregate
is large the stochastic effects are small, and so the probability that the key mutation
spreads is higher. From population genetics theory of simple models of mutation
and selection we know that the effects of selection are more important than the
effects of drift when s, > 1/N,, where N, is the effective population size [9]. In our
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model, since both beneficial and deleterious mutations can occur, the value of N,
depends on the mutation rate and on sq [8][10].

The above result suggests that there is a critical GC size that leads to a maximal
level of affinity. GCs of sizes above this value do not lead to further improvements
in affinity. We can also see that organisms in which the process of SHM /selection
is spread out in tiny structures may not achieve high levels of affinity maturation.
This is compatible with what is observed in lower vertebrates.

3.3 Changes in Average Diversity with Aggregation

Next we have studied how the GC size influences the level of diversity for the
whole set of reactions. The diversity of the surviving cells is measured by counting
the number of pair-wise differences in the Ig V sequences between two random
clones sampled from the GC population.

Figure 3 shows the results for different values of the mutation effects s; and
sp and for different times of the GC reaction. Obviously, for short reaction times
the diversity level is low, but as time increases this level approaches equilibrium.
This depends on the values of the parameters governing mutation and selection,
as discussed in the previous section.
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Fig. 3. Level of Ab diversity at different times of the GC reaction for increasing aggre-
gation level

Initially the diversity generated is mainly due to deleterious mutations, but as
time proceeds key mutations start to increase in frequency and they out-compete
lower affinity clones. This may lead to an actual reduction in diversity. As larger
aggregates lead to a higher probability of fixing key mutations the decrease
in diversity is more pronounced for the larger aggregates. The wiping out of
diversity in clonal populations is a well-established phenomenon in population



Did GC Evolve Under Differential Effects of Diversity vs Affinity? 7

genetics [11]. From this result we conclude that there is an intermediate value
of the GC size for which the level of diversity generated is maximum.

Taken together, the above two results indicate that only GCs of some inter-
mediate size lead to high levels of both affinity and diversity.

4 Discussion

The present preliminary results show that for lower values of aggregation, diver-
sity and affinity maturation act together as a positive selection force for further
aggregation increase. However, beyond a certain degree of aggregation there is a
trade-off between diversity and affinity maturation. This leads to an optimal size
of GCs, for which both high affinity Abs and a highly diverse pool of slightly dif-
ferent ones is produced. An important point that deserves mentioning is that the
present results depend quantitatively on the particular definition of the fitness
Wi;;. However, we expect the qualitative behaviour will be much less affected
by the fitness definition. On the other hand, the present multiplicative fitness
definition of W;; is the most commonly used because of two major reasons: its
simplicity and the fact that, as far as we know, to date there is no data rele-
vant to establish a ‘fitness landscape’ linked to mutations affecting a particular
phenotype, and in particular to those affecting the affinity of antibodies.

The classical view of GCs assumes that their major role is to generate high
affinity levels of serum Abs, as well as a dominant pool of high affinity memory B
cells, through a very efficient selection process [1]. However, in addition to affin-
ity maturation, the diversity generated during the GCR may be also important.
Two kind of experimental observations support this view. First, although all ver-
tebrates display similar diversity generation by SHM during immune responses
to protein Ags, lower vertebrates have significantly lower efficiency in selecting
high affinity Ab mutants than higher vertebrates. However, lower and higher
vertebrates have similar life spans. Second, mutant mice with impaired SHM
get sick because of strong intestinal inflammation due to massive infiltration of
normal anaerobic gut flora [5].

The preliminary results that we have presented here suggest an alternative view
of the role of SHM in immune responses. According to it in present day higher ver-
tebrates, the GC reaction not only facilitates the selection of high affinity mutant B
cells, but also allows for a rapid generation of (refined) diversity with the potential
to recognize changes in the originally immunizing Ag (for instance, virus that mu-
tate with high rate). In other words, the selection process may be only moderately
efficient, and in some sense imperfect at leading to the creation of the best (high-
est affinity) possible memory B cell pool, but may have evolved just so to allow
incorporation into the memory pool enough Ig diversity around the specificity of
the initial triggered Igs. In this way different individuals can have a good coverage
of the different mutational variants of a pathogen generated during its replication.
That is, there would be an increased fitness for those individuals able to deal with
pathogen variants, while conserving a large enough amount of Abs with increased
affinity to the initial pathogen strain. We further speculate that the SHM mecha-
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nism could have co-evolved with mutational mechanisms in virus and bacteria fo-
cusing in each case in recognition molecules (e.g., Ig V regions in the first case and
invasiveness molecules, like influenza hemaglutinin, in the second case), leading af-
ter a race similar high mutation rates and similar diversity generation compatible
with the physiology of those molecules.

Many related important questions remain to be explored. What determines
the SHM rate? Is it optimal? What determines the time of duration of the GCR?
Under the view suggested above this time would be related not only to the mu-
tation rate, but also to the diversity generated. For a given mutation rate, the
diversity generated and the probability to spoil the physiologyof the Abs will
increase with the duration of the GC reaction. Thus, the mutation rate and the
duration of the mutational process will be the maximum compatible with pre-
serving the role of the Abs, while the mutational mechanism of microorganisms
must be limited also in their rates and the length of the period time in which it
is active, being at rest in non-stressing environments.
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Abstract. This paper presents the computer aided simulation of a model
for the control of an immune response. This model has been developed to
investigate the proposed hypothesis that the same cytokine that amplifies
an initiated response can eventually lead to its downregulation, if it can
act on more than one cell type. The simulation environment is composed
of effector cells and regulatory cells; the former, when activated, initi-
ate an immune response, while the latter are responsible for controlling
the magnitude of the response. The signalling that coordinates this pro-
cess is modelled using stimulation and regulation cytokines. Simulation
results obtained, in accordance with the motivating idea, are presented
and discussed.

1 Introduction

The immune system is a complex aggregate of cells, antibodies and signalling
molecules. The Clonal Selection Theory [1] has been, for nearly 5 decades, the
dominating base to explain how the immune system discriminates between self
and nonself. This discrimination is extremely important, because the system
must be able to eliminate nonself components that infiltrate the body, while
remaining unresponsive to self. The Clonal Selection Theory argues that the
system’s tolerance to self is accomplished through a process denominated neg-
ative selection, when self-reactive B and T lymphocytes are eliminated during
their development.

However, there’s increasing evidence that some self-reactive cells eventually
escape from the clonal deletion [2]. Therefore, these lymphocytes are present
in the periphery, and could give rise to hazardous autoimmune diseases. Vari-
ous models have been proposed to explain why, most of the times, these cells
remain inactive, ignoring self antigens. These models are based on passive or re-
cessive mechanisms, such as low avidities of their receptors for self-antigens and
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lack of costimulation from antigen presenting cells (APCs). There is, however, a
dominant mechanism [3], based on active downregulation of the activation and
expansion of self-reactive lymphocytes by certain T cells [4], named regulatory
T cells.

In addition, as discussed in [5], there’s not much information regarding the
mechanisms that terminate immune responses. After a response to an antigen,
the immune system is returned to a state of rest, just like before the initiation
of the response. This process, called homeostasis, allows the immune system
to respond to new antigenic challenges (because the lymphocyte repertoire is
closely regulated), and is also conducted by regulatory T cells.

To understand how the control of an initiated immune response is important,
it is interesting to notice that, according to [6], the tissue damage that follows
the chronic inflamation of tuberculosis is caused not by the bacillus, but by an
uncontrolled response to it. In this sense, this work presents a model for the
control of an initiated immune response, based on regulatory cells and cytokine
secretion and absorption. The model has been motivated by the hypothesis that
the same cytokine that improves an initiated response can lead to its termination,
if this cytokine acts on more than one cell type with different affinities.

This paper is presented in the following way: first a short description of the
cytokines included in the proposed model is presented. Afterwards, regulatory
T cells are discussed, focusing on their interesting features for the simulation,
followed by a detailed description of the proposed model and its parameters. In
the end, results obtained by a simulation are presented and discussed.

2 Cytokines

Cytokines are control proteins secreted by the cells of the immune system, in
response to microbes, other antigens or even other cytokines. For greater details
regarding cytokines, the reader is invited to read [7] and [8].

Most cytokines are pleiotropic (capable of acting on different cell types), and
influence the synthesis and actions of other cytokines. Besides, their secretion is
a brief, self-limited event, and they may have local and systemic actions. They
usually act close to where they are produced, either on the same cell that se-
cretes them (autocrine action) or on a nearby cell (paracrine action), and initiate
their actions by binding to specific receptors located on the membrane of the
target cells. The expression of these receptors (and, thus, the responsiveness to
cytokines) is controlled by external cell signals (in B and T cells, the stimulation
of antigen receptors). In the proposed model, there are two cytokines of interest,
described below:

Interferon-vy (IFN-v) : IFN-v is the cytokine that allows T lymphocytes and
natural killer (NK) cells to activate macrophages to kill phagocytosed patho-
gens. Besides, IFN-~ improves the ability of antigen presenting cells (APCs)
to present antigens, by increasing the expression of MHC and costimulation
molecules. Therefore, it can be seen as an stimulation cytokine, that acts in
order to increase the magnitude of a response;
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Interleukin-10 (IL-10) : IL-10 acts inhibiting the activation of macrophages,
being involved in the homeostatic control of innate host immune responses.
It prevents the production of IL-12 and TNF by activated macrophages. Be-
cause IL-12 is a critical stimulus for IFN-~ secretion and induces innate and
cell-mediated immune reactions against intracellular pathogens, IL-10 is re-
sponsible for downregulating these reactions. Therefore, it can be thought of
as a regulatory cytokine, decreasing the magnitude of an established immune
response.

3 Regulatory T Cells

The maintenance of immunologic tolerance by natural CD25% CD4™ T cells was
presented in [9], where autoimmune diseases were induced in normal rodents by
removal of a specific subpopulation of CD4™ cells. Recently, it was found that
these cells, responsible for the maintenance of self-tolerance, can be identified by
the expression of the Fozpd marker [10]. These cells are capable of exerting sup-
pression upon stimulation via the T cell receptor (TCR), and their engagement
in the control of self-reactive cells is related to the recognition of self-antigens in
the normal environment. Besides, once stimulated, the suppression mediated by
CD25%" CD4T regulatory T cells mediate is antigen non-specific. Therefore, they
are capable of suppressing the proliferation of T cells specific for the antigen
that lead to their activation, but also other T cells specific for other antigens, a
mechanism known as bystander suppression [11].

In this sense, the defining feature of CD25% CD4* T, cells is the ability to
inhibit the proliferation of other T cell populations in wvitro. This suppression
requires the activation of the regulatory cell through its TCR, doesn’t involve
killing the responder cell and is mediated through a mechanism based on cell
contact or mediated by IL-10 and other cytokines [12] [13].

These cells play a crucial role not only in preventing self-reactive T cells that
have escaped negative deletion from initiating an immune response against self-
antigens. Induced regulatory cells are engaged in the control of a “legitimate”
response in the periphery, preventing local or systemic immunopathology (such
as septic shock), due to the excessive production of pro-inflamatory cytokines by
activated cells [14]. This is an interesting feature, with little exploration available
in the literature. An important work in this line is [15], where the role of Toll-like
receptors (TLRs) in the process of inflamation is discussed. In addition, these
cells are responsible for preventing the complete elimination of the invading
microbe, because its persistency, in low levels, is important for the continuous
stimulation of long-lived functionally quiescent memory cells [5].

The immune system can be studied in a context of infection, characterized
by a response to antigenic pathogens, or in healthy, normal individuals, when
the internal activities of the system are dominant. In both cases, regulatory T
cells play an important role. In the former, these cells are responsible for the
control of both the inflamatory activity and the intensity of the response. In the
latter, they prevent autoimmune diseases, given the existence of self-reactive B
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and T lymphocytes. A recent work presented in [16] discusses two hypotheses in
this context: the tuning of activation thresholds of self-reactive T lymphocytes,
making them reversibly “anergic”, and the control of the proliferation of these
cells by specific regulatory T cells.

4 Model Description

As previously discussed, this paper is aimed at modelling the control of an ini-
tiated immune response through cytokine signalling, involving effector and reg-
ulatory cells. The proposed model is based on microscopic mechanisms, and,
due to the lack of numerical data from in vivo or in vitro experiments, most
of the governing equations were arbitrarily selected. However, even if numerical
data were available, it is important to emphasize that a complete modelling the
immune system is not trivial, given its complexity [17] [18].

Before modelling the actual process of controlling the immune response, some
considerations were made about the environment. The tissue where the response
would occur is approximated by a rectangular region, whose dimensions are
given as parameters to the simulation. Also, the number of iterations and the
time step are additional necessary parameters. Cytokines are represented by
two-dimensional matrices, equivalent to a discrete representation of the environ-
ment. In this sense, there are two cytokine matrices, which separately store the
concentrations of the stimulation and regulatory cytokines. Each cell occupies a
single square in the grid, and, currently, remains fixed in this position. Besides,
the simulations performed so far don’t take cell clonning into consideration. Fi-
nally, all data presented in this paper is adimensional (i.e.: no physical units for
the concentrations or other variables are used), because this has no effects on
the simulation outcome. However, if the results are to be compared to real world
data, the introduction of physical units in the governing equations is necessary.

The simulation is started after an effector cell is stimulated, after, for example,
contact with a specific antigen. It is important to mention that this model doesn’t
consider antigen dynamics, once the response has been initiated. This cell will
secrete an amount of an stimulation cytokine that will be diffused through the
environment. The remaining cells (both effector and regulatory) will, then, ab-
sorb some of this cytokine, and be activated, secreting, in turn, more cytokines,
until a steady state is reached. Effector cells secrete the stimulation cytokine,
while regulatory cells secrete the regulatory cytokine; on the other hand, effec-
tor cells absorb both stimulation and regulatory cytokines, while regulatory cells
absorb only the stimulation cytokine. Based on the discussion presented in [5],
the expected response should be an increase of the number of activated effector
cells, with little influence from regulatory cells, until the response suppression is
initiated, with the activation of regulatory cells and eventual termination of the
response. These steps are represented graphically in figure 1.

Each cell stores its position in the tissue and a value representing its acti-
vation level. This activation level reflects the immunological status of the cell,
and is a real number in the interval (0,1). The greater the activation level, the
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Fig. 1. Steps for the simulation of the proposed model

“more” activated and immunocompetent a given cell can be considered to be,
in contrast to a resting condition, represented by an activation level close to
zero. The affinity between a cell and a cytokine, a key point of the motivating
hypothesis, is modelled by constants used to update the cell activation level,
based on the cytokine absorption, that will be described in greater detail. This
cytokine affinity is proportional to the increase in the cell activation level, so
that cells with a large affinity will be highly stimulated upon absorption of a
given stimulation cytokine. This approach to the simulation is very similar to
the proposal of [18], where a cellular automaton is used to simulate the dynamics
of the immune system during immunization.

Due to the complexity involved, each distinct step in the simulation is pre-
sented separately, in the following sub-sections.

4.1 Cytokine Decay and Diffusion in the Environment

Updating the cytokine concentration in the environment is conducted in accor-
dance with the discrete two-dimensional diffusion equation [19], using equations
1 for diffusion and 2 for decay, where ¥ (z,y,t) is the cytokine concentration at
the point defined by the coordinates (x, y) at the time instant ¢, k4 is the cytokine
diffusion rate, At is the simulation time step, ¢ is the decay constant, n(x,y) is
the number of valid slots surrounding the position defined by points (z,y) (rep-
resenting the tissue boundary conditions) and h, and h, are the environment
dimensions. The artificial tissue has been modelled as a compartment isolated
from the body, so that there’s no cytokine flux coming in or out of the simulation
environment. Therefore, all cytokines secreted by the cells in the tissue remain
confined to the environment, without taking the decay into consideration.

kq- A
Uit + A = oy )+ = 1y +
z Ny

1<e<hpl<y<h, (1)

Y(z,y,t+ At) = Y(z,y,t) - (1-¢),0< (<1 (2)
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4.2 Cytokine Absorption

Following the cytokine diffusion and decay in the tissue, each cell in the popu-
lation proceeds to absorb cytokines located in the position where it is located.
According to the model being simulated, effector cells can absorb both IFN-+
and IL-10, while regulatory cells can only absorb IFN-~. For simplicity, this pro-
cess has been modelled by a first degree polynomial of the cell activation level,
according to equation 3. This equation determines the absorption rate, that is,
the relative amount of a given cytokine to be absorbed, where ¢, is the max-
imum cytokine input rate, to be absorbed when the cell is fully activated, ¢,
is the minimum cytokine input rate, absorbed when the cell has received little
or no stimulation and « is the cell activation level. As mentioned, the value
given by equation 3 is relative to the total cytokine concentration located in the
position where the cell is located. Therefore, to determine the absolute amount
of cytokine to be absorbed, the total cytokine concentration is determined, and
multiplied by ¢(a)™, as shown in equation 4. To illustrate the function used to
determine the absorption rate, it is shown in figure 2, for two different values of

mzn and djmam
d)(a)zn = d);tblzn + ( i‘saw - ::LLG) e (3)
A(a,y,t,a)™ = d(a)™ - p(a,y, 1) (4)
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Fig. 2. Plots of the cytokine absorption rate as a function of cell activation for ,.;, =
0.1 wmaz = 0.5 and wmm =0.3 wmaz =0.5

4.3 Determination of the New Activation Level

After cytokine absorption, the simulation continues to determine the new activa-
tion level for each cell, given as a function of the cytokine inputs. As previously
discussed, effector cells have ¥ >0 and ¥ > 0 (because they

in
stimulation = regulation =
>0

can absorb both IFN-y and IL-10), and regulatory cells have ¢ " >
and " = 0 (because regulatory cells can absorb only IFN-v). In the

regulation
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motivating hypothesis, the different affinities for the stimulation and the reg-
ulatory cytokine for the effector cells plays an important role in this model.
Therefore, the constants involved in this step have great influence on the model,
because the cell activation level is used as a measure of the response magnitude.
Given the cytokine inputs, the resultant input is then determined, according
to 5, where k, and ks are positive values, named regulation and stimulation
constants, respectively.

X = ks - w;?imulation — k- wvzjelgulation (5)

Effector Cells. Closer inspection of equation 5 reveals that the resultant input,
when negative, implies that cell regulation exert domination over cell stimula-
tion, and the cell activation level should be decreased. On the other hand, a
positive resultant input should increase the activation level. To model the acti-
vation level update process, the sigmoid function is used. The new cell activation
level, given as a function of the resultant input and current activation level, is
given by equation 6, where o is the current activation level, x is the resultant
input and o is the sigmoid function steepness. To illustrate the activation func-
tion, it is shown in figure 3, as a function of the resultant input (x), for two
values of ap and o (ap = 0.2,0 = 0.1 and ap = 0.8,0 = 0.2).

1
141200 eqp(—0 - )

@o

(6)

a(x, ao) =

Activation Function
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Fig. 3. Plots of the new cell activation level as a function of resultant input for ap =
0.2,0 =0.1 and ap = 0.8,0 =0.2

The activation function shown in figure 3 has two interesting characteristics:

— the current activation level (ap in equation 6) is related to the horizontal
translation of the activation curve. As a matter of fact, the curve is trans-
lated so that a(x = 0, ap) = ap; thus, in the absense of input stimuli, the cell



16 T. Guzella et al.

activation level will remain constant. In this sense, each cell can be seen as
a processing unit with an activation level controlled by a given externally
received input

— the steepness (¢ in equation 6) is inversely proportional to the transition
region between 0 and 1 in figure 3. As an example, consider the first curve
(g = 0.2,0 = 0.1), where a resultant input equals to approximately 5.4 units
is needed to increase the activation level by 0.1, while, for the second curve,
this value is around 4.1 units. Therefore, the steepness, together with the
stimulation and regulation constants, can be seen a parameter representing
the affinity for the absorbed cytokines.

Regulatory Cells. Due to the fact that, in this proposal, regulatory cells react
only to IFN-v, the resultant input (, according to equation 5) is either positive
or zero. Therefore, using equation 6 is not appropriate, because the activation
level would never decrease. Thus, update of the activation level for regulatory
cells is governed by equation 7.

2

14 exp(—o-x) 1 Q

a(x)

According to equation 7, the new activation level for regulatory cells is not

dependant on the current activation level (), in contrast to equation 6. In this

sense, regulatory cells have no memory of past states (in this case, the activation
level), and act based only on the current environment conditions.

4.4 Cytokine Secretion

In this step, each cell secretes an amount of a given cytokine. As previously
discussed, effector cells secrete IFN-v (referred to as a stimulation cytokine),
while regulatory cells secrete IL-10 (referred to as a regulatory cytokine). The
amount of cytokine to be secreted is directly proportionally to the cell’s acti-
vation level, and has been modelled according to equation 8, where A is the

Cytokine Secretion Function
T T T T T T T

Cytakine Seomtian
T

wl ' v ua va
el Activation Lo

Fig. 4. Plots of the cytokine secretion as a function of cell activation for two sensitivity
values
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target cytokine secretion amount (which increases the cytokine concentration in
the position where the cell is located), ¥2% is the maximum secretion allowed
and « is the cell activation level. The secretion function is shown in figure 4, for

two maximum secretion values (1% =2 and 2% = 8).

Ap(a) =i, - (3)
This equation has been chosen for both simplicity and ease of calculation, so
that the simulation of the model is not limited by an excessive computational
load. As previously mentioned, no assertion about the validity of this modelling
can be performed for now, due to the absence of numerical experimental data.

5 Results and Discussion

In order to verify the response of the designed model, a simple simulation scenario
was selected. The artificial tissue is represented by a 3x3 square region, with the
cell positioning shown in figure 5, where £ and R are used to designate the
cell type (effector and regulatory, respectively), and the number located right
under the cell type designates the cell number, to be used when analysing the
simulation results, with the x and y axis in the horizontal and vertical directions,
respectively.

E E E
1 2 3
R E: effector cell
7 R: regulatory cell
E E E
v 4 5 6

Fig. 5. Artificial tissue where the simulation took place

The cell populations for the simulation are composed of, according to figure
5, 6 effector cells and 1 regulatory cell. Therefore, the initial cell population is
composed of 14.3% of regulatory cells, a number close to values verified experi-
mentally [9].

Before starting the simulation, the cell identified by number 2 in figure 5 was
stimulated, by setting its activation level to 0.999. This could be caused by the
recognition of an antigen, for example. The remaining cells were initialized with
an activation level equals to 1-10~%. Afterwards, the simulation was executed
for 30 iterations, with a time step of 1 second. The diffusion rates of stimulation
and regulatory cytokines were chosen as 1.5 and 2, respectively, while decay rates
were chosen as 0.25 and 0.05, respectively. Therefore, regulatory cytokines diffuse
more easily and decay less into the environment than stimulation cytokines.
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Table 1. Simulation parameters

Parameter Value
Effector cells Regulatory Cells
Max. cytokine secretion (5%,) 2 45.5
Min. stimulation cytokine absorption (¢&%,) 0.4 0.05
Max. stimulation cytokine absorption (¢&,,) 0.8 0.5

Min. regulation cytokine absorption (¢&%,) 0.3 -
Max. regulation cytokine absorption (¢jn,.) 0.5 -
Stimulation constant (k) 10 3

Regulation constant (k) 10 -
Activation steepness (o) 1 2

Additional parameters for both effector and regulatory cells, chosen empirically,
are shown in table 1.

As previously discussed, a key feature of the hypothesis motivating the devel-
opment of the proposed model is the ability of the stimulation cytokine to be ab-
sorbed with different affinities by effector and regulatory cells. In order to obtain
the expected system dynamic response (increasing the magnitude of the response,
followed by its decline), it is analysed the case when the effector cell affinity for
the stimulation cytokine is greater than the affinity by regulatory cells. In this sit-
uation, the regulatory cell would only be activated once a large amount of stimu-
lation cytokine (secreted by activated effector cells) is present in the environment.

The model parameters shown in table 1 were chosen to reflect this assumption.
Special care was taken not to select large diffusion rates, leading to instability
when determining the cytokine diffusion. The activation steepness for effector
cells is twice as low as for regulatory cells, while the stimulation constant for
effector cells is greater than for regulatory cells. Afterwards, the selected pa-
rameters were tuned to lead to a desired characteristic, where the response is
initiated (by the initially stimulated cell), increased (by the recruitment of sur-
rounding effector cells) and terminated (by suppression of the activated cells). It
is important to mention that some combinations of values have lead to oscilla-
tions in the response (data not shown), with the activation level of effector and
regulatory cells increasing and decreasing, without reaching a steady state. This
oscillatory response of the model is undesirable, because there are no reports
from a similar behavior in the natural immune system.

The simulation results obtained for the selected parameters are presented in
figures 6, 7, 8 and 9. By the end of the simulation, the effector cells identified
by numbers 4, 5 and 6, according to figure 5, were not activated, remaining in a
resting state during the simulation. Thus, simulation results for these cells are
not presented. On the other hand, the effector cells identified by the numbers 1
and 3 in figure 5 were successfully recruited for the immune response initiated
by effector cell number 2. Some iterations after the beginning of the simulation,
the regulatory cell (number 7) began to be stimulated, acting, at some time, to
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Fig. 7. Cytokine secretion for the initially stimulated effector cell 2

end the initiated response. Figure 6 shows the activation level for effector cells
1, 2 and 3, and regulatory cell 7, during the simulation procedure, while figures
7, 8 and 9 show the cytokine absorption and secretion for these cells.

The results indicate that the model, with the parameters presented in table
1, is able to exhibit the expected response characteristic, with the recruitment of
cells and, after some time, termination of the response. Figure 6 shows that cell
number 2 (initially stimulated) remains highly active (with an activation level
close to 1) for 12 iterations, and quickly decays, reaching a resting condition by
iteration 15. In the same figure, it can be seen that effector cells 1 and 3 have
reached a peak activation level equals to 0.57 at iteration 14, quickly declining
and reaching a low activation level by iteration 16. The regulatory cell (number
7) has reached a peak activation level equals to 0.18 at the same time than
effector cells 1 and 3 have. One interesting characteristic of the response shown
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Fig. 9. Regulatory cell cytokine secretion and absorption

in figure 6 is that the initially stimulated effector cell is suppressed before cells
1 and 3, reaching, an activation level of 0.04 at iteration 14, exactly when cells
1 and 3 have reached peak values. This activation delay is due to the time taken
by the secreted cytokines to diffuse in the environment and reach nearby cells.
In addition, the cytokine activation and secretion data (figures 7, 8 and 9)
reveal interesting information. Cytokine secretion by the regulatory cell reaches
a peak value equals to 8, at iteration 13, while cytokine absorption is maintained
at low levels, never exceeding 0.2. Therefore, it is possible to conclude that regu-
latory cells, in this model, need a low absorption rate to terminate the response,
resulting in little environment disturbance when not suppressing effector cells.
Because the governing equation for cytokine secretion was chosen as directly
proportional to the activation level 8, both variables have the same waveforms;
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this can be notice when comparing figures 6 to 7, 8 and 9. Inspection of figure 7
reveals that the regulatory cytokine absorption is nearly zero for the first 3 iter-
ations, intersecting the absorption cytokine absorption curve around iteration 6.

6 Conclusion

In this paper, a model for the control of an immune response, based on regula-
tory cells and cytokines, was presented. Althought based on relatively simple and
arbitrary functions, the model simulation has lead to interesting results, with an
expected response characteristic obtained. Therefore, this model can be consid-
ered as an initial validation to the hypothesis that has lead to its development,
that the same cytokine that stimulates the immune system, upon initiation of
an immune response, can eventually lead to the downregulation of this response,
if the secreted cytokine affects more than one cell type, with different affinities.

However, there are some points that need further investigation, such as a
mathematical explanation for the oscillatory response obtained for some model
parameters, and the influence of antigen dynamics and persistence in the system.
In addition, the model should take cell clonning and movement into consider-
ation, two aspects not considered in the simple simulation presented. In this
sense, this paper can be thought of as only an starting point for the simulation
of more complicated and accurate scenarios.
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Abstract. Predicting the virulence of new Influenza strains is an impor-
tant problem. The solution to this problem will likely require a combina-
tion of in vitro and in silico tools that are used iteratively. We describe
the agent-based modeling component of this program and report prelim-
inary results from both the in vitro and in silico experiments.

1 Introduction

Influenza, in humans, is caused by a virus that attacks mainly the upper respi-
ratory tract, the nose, throat and bronchi and rarely also the lungs. According
to the World Health Organization (WHO), the annual influenza epidemics affect
from 5% to 15% of the population and are thought to result in 3-5 million cases
of severe illness and 250,000 to 500,000 deaths every year around the world [1].
The rapid spread of H5N1 avian influenza among wild and domestic fowl and
isolated fatal human cases of H5N1 in Eurasia since 1997, has re-awakened inter-
est in the pathogenesis and transmission of influenza A infections [2]. The most
feared strain would mimic the 1918 strain which combined high transmissibil-
ity with high mortality [3,4]. Virulence of influenza viruses is highly variable,
defined by lethality and person-to-person transmission, but the causes of this
variability are incompletely understood. The early events of influenza replica-
tion in airway tissue, particularly the type and location of early infected cells,
likely determine the outcome of the infection. Rate of airway tissue spread is
controlled by efficiency of viral entry and exit from cells, variable intracellular
interferon activation modulated by the viral NS-1 protein, and by an array of ex-
tracellular innate defenses. Although molecular biology has provided a detailed
understanding of the replication cycle in immortalized cells, influenza replica-
tion in intact tissue among phenotypically diverse epithelial cells of the human
respiratory tract remains poorly understood. We are missing a quantitative ac-
counting of kinetics in the human airway and an explanation for how one strain,
but not a closely related strain, can initiate person-to-person transmission.
Although the viral structure and composition of influenza are known, and even
some dynamical data regarding the viral and antibody titers over the course of
the infection [5,6,7], key information such as the shape and magnitude of the
viral burst, the length of the viral replication cycle (time between entry of the
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first virus and release of the first produced virus), and the proportion of produc-
tively infectious virions, is either uncorroborated, unknown, or known with poor
precision. This makes modeling influenza from data available in the literature
a near impossibility, and it points to the need for generating experimental data
aimed directly at the needs of both computational and mathematical models.

This paper describes the computer modeling side of a project that is integrat-
ing in vitro experiments with computer modeling to address this problem. We are
focusing on the early dynamics of influenza infection in a human airway epithe-
lial cell monolayer using both in vitro and computer models. The in vitro model
uses primary human differentiated lung epithelial cells grown in an air-liquid
interface (ALI) culture to document the kinetics of influenza spread in tissue.
The computer model consists of an agent-based model (ABM) implementation
of the in vitro system. Its architecture is modular so that more details can be
added whenever data from the in vitro system justifies it. Here, we will describe
the implementation of the computer model and report some initial simulation
results.

To our knowledge, only four mathematical models for influenza dynamics have
ever been proposed. The first and oldest one is from 1976 and consists of a very
basic compartmental model for influenza in experimentally infected mice [8]. Af-
ter a gap of 18 years, Bocharov et al. proposed an exhaustive ordinary differential
equation model based on the basic viral infection model but extended to include
12 different cell populations described by 60 parameters [9]. More recently, one of
us co-authored a paper presenting another ordinary differential equation model
with very slight modifications from the basic viral infection model [10] and a
second paper presenting a simple ABM for influenza [11]. All of these models
either perform poorly when compared to experimental data or are too simplistic
to capture the dynamics of interest in influenza.

2 Agent-Based Modeling

The spatial distribution of agents is an important and often neglected aspect of
influenza dynamics. We capture spatial dynamics through the use of an agent-
based model (also known as an individual-based) cellular automata style model.
Each epithelial cell in the monolayer is represented explicitly, and a computer
program encodes the cell’s behavior and rules for interacting with other cells and
its environment. The cells live on a hexagonal lattice and interact locally with
other cells and virions in their neighborhood following a set of predefined rules.
Thus, the behavior of the low-level entities is pre-specified, and the simulation
is run to observe high-level behaviors (e.g. to determine an epidemic threshold).
This style of modeling emphasizes local interactions, and those interactions in
turn give rise to the large-scale complex dynamics of interest.

This modeling approach can be more detailed than other approaches. The
programs can directly incorporate biological knowledge or hypotheses about
low-level components. Data from multiple experiments can be combined into
a single simulation, to test for consistency across experiments or to identify gaps
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in our knowledge. Through its functional specifications of cell behavior, our can
potentially bridge the current gap between intracellular descriptions and infec-
tion dynamics models. Similar approaches have been used to model a variety
of host-pathogen systems ranging from general immune system simulation plat-
forms [12,13,14,15,16] to models of specific diseases including tuberculosis [17,18],
Alzheimer’s disease [19], cancer [20,21,22,23,24,25], and HIV [26,27].

The spatially explicit agent-based approach is an appropriate method for this
project. The ALI is a complex biological system in which many different defenses
(e.g. mucus, cytokines) interact and biologically relevant values cannot always
be measured directly. In addition, recent high-profile publications have demon-
strated that entry of avian and human-adapted influenza viruses into different
airway epithelial cells depends on the cell receptor which in turn is dependent on
cell type and location in the airway [28,29]. Our modeling approach will facilitate
the exploration of spatially heterogeneous populations of cells.

3 Influenza Model

Our current model is extremely simple. We plan to gradually add more detail,
ensuring at each step that the additions are justified by our experimental data.
Here, we describe the model as it is currently implemented.

We are modeling influenza dynamics on an epithelial cell monolayer in vitro.
The monolayer is represented as a two-dimensional hexagonal lattice where each
site represents one epithelial cell. The spread of the infection is modeled by
including virions. Rather than treat each virion explicitly, the model instead
considers the concentration of virions by associating a continuous real-valued
variable with each lattice site, which stores the local concentration of virions
at that site. These local concentrations are then allowed to change, following a
discretized version of the diffusion equation with a production term. The rules
governing epithelial cell and virion concentration dynamics are described below.

3.1 Epithelial Cell Dynamics

The epithelial cells can be found in any of the four states shown in Fig. 1, namely
healthy, containing, secreting, and dead. For simplicity, we assume that there is
no cell division or differentiation over the course of the infection. The parameters
responsible for the transition between these states are as follows.

Infection of Epithelial Cells by Virions (k): Each site keeps track of the
number of virions local to the site, V;,, . But while there are V;,, ,, virions at site
(m,n) at a given time step, depending on the length of a time step, not all of these
virions necessarily come in contact with the cell, and some may contact it more
than once. Alternatively, a particular strain of virions may not be as successful
at binding the cell’s receptors and being absorbed by the cell. To reflect this real-
ity, we introduce the parameter k£ which gives the probability per hour per virion
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Infected

Fig. 1. The agent-based model’s four states for epithelial cells, (Healthy, Containing,
Secreting, and Dead), and the parameters responsible for controlling the transitions
between these states

that a healthy cell will become infected (enter the containing stage). In other
words, k X V,, ,, gives the probability that the healthy cell located at site (m, n)
will become infected over the course of an hour. In order to fit experimental
data, we set the rate of infection of cells per virions in our model to k = 8 per
virion at that site per hour.

Duration of the Viral Replication Cycle (7,): This variable represents the
time that elapses between entry of the first successful virion and release of the
first virion produced by the infected cell. From the experiments, we found this
to be about 7 h, and hence we set 7, = 7 h in the ABM.

Lifespan of Infectious Cells (74 & 04): Once infected (containing), a cell
typically lives 24 h—36 h (from experimental observations). Given that the repli-
cation cycle lasts 7,, = 7 h, this means that once it starts secreting virions, an
infectious cell typically lives 17 h—29 h or about 23 4 6 h. Thus, we set the lifes-
pan of each infected cell individually by picking it randomly from a Gaussian
distribution of mean 74 = 23 h and standard deviation 04 = 6 h. In our ABM,
cell death is taken to mean the time at which cells cease to produce virions.
Note that in vitro, a cell undergoing apoptosis will eventually detach from the
monolayer and will be replaced by a differentiating basal cell. For the moment,
we neglect these processes and reduce their impact by fitting our ABM to ex-
perimental results over no more than the first 25 h after virion deposition.

3.2 Virion Dynamics

As mentioned earlier, virions are not represented explicitly. Instead, we track the
concentration of virions stored as a real-valued continuous variable at each site
of the lattice. The diffusion of virions is then modeled using a finite difference
approximation to the diffusion equation. The continuous diffusion equation of
the concentration of virions, V, is described by

ov

_ 2
5 = Dv OV (1)



Modeling Influenza Viral Dynamics in Tissue 27

where V is the concentration of virions, V? is the Laplacian, and Dy is the
diffusion coefficient. The simulation is run on a hexagonal grid. The geometry
of the grid and the base vectors we chose are illustrated in Fig. 2.

Fig. 2. Geometry of agent-based model’s hexagonal grid. The honeycomb neighborhood
is identified in gray, and the base vectors m and n are shown and expressed as a function
of Ax, the grid spacing which is the mean diameter of an epithelial cell.

We can express (1) as a difference equation in the hexagonal coordinates
(m,n) as a function of the 6 honeycomb neighbors as

Vida =Vin _ 4Dy

1
_ st t
At - (A.’E)Q Vm,n + 6 Zvnel

nei

; (2)

such that Vit 1 at time ¢+1 as a function of V!, , and its 6 honeycomb neighbors
V. at time t is given by

4Dy At 2Dy At
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where > .V, is the sum of the virion concentration at all 6 honeycomb neigh-
bors at time t.

Because we want to simulate the infection dynamics in an experimental well,
we want the diffusion to obey reflective boundary conditions along the edge
of the well. Namely, we want %‘; = 0 at a boundary where j is the direction
perpendicular to the boundary. It can be shown that for such a case, (3) becomes

2Dy At 2Dy At .

3(Am)2> Vin + 3(Ax)? Npei (4)

t+1
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where Npe; is the number of neighbors a cell really has. Note that for Nye; = 6,
(4) reduces to (3).

The virion-related parameters Dy, Az, At in (4), and the release rate of
virions, gy, have been set as follows.

Diffusion Rate of Virions (Dy): The diffusion rate or diffusion coefficient for
virions, Dy, measures how fast virions spread: the larger Dy, the faster virions
will spread to neighboring sites and then to the entire grid. One way to deter-
mine Dy from experimental results is to take a measure of the “patchiness” of
the infection, i.e.the tendency of infected cells to be found in batches. The au-
tocorrelation function offers a good measure of patchiness. Hence, we calibrated
Dy by visually matching our simulation to the experimental autocorrelation.
We started with Dy = 3.18 x 10712 m? /s which is the diffusion rate predicted
by the Stokes-Einstein relation for influenza virions diffusing in plasma at body
temperature. Ultimately, we found that Dy = 3.18 x 1071 m?/s, a value 1,000-
fold greater than the Stokes-FEinstein diffusion, yielded the best agreement to the
experimental autocorrelation. This is illustrated in Fig. 3 where the experimental
autocorrelation is plotted against simulation results for different values of Dy .
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Fig. 3. Autocorrelation at 24 h post-harvest for the experiments (full line, full cir-
cles) compared against the autocorrelation produced by the simulation when using
a diffusion coefficient of Dy = 3.18 x 10~*? m?/s (dotted line, empty squares), and
Dy = 3.18 x 107 m?/s (dashed line, empty triangles). All parameters are as in Ta-
ble 1 except for the Dy = 3.18 x 107!? m?/s simulation where k was set to 4 per
virions per hour to preserve the same fraction of cells infected at 24 h post-harvest.
The autocorrelation have been “normalized” to be one for a lag of zero.

Grid Spacing or Diameter of Epithelial Cells (Ax): The diameter of
epithelial cells was estimated from “en face” and cross-section pictures of the
experimental monolayer. The average epithelial cell diameter was found to be
about 11 + 1 pum. We use Az = 11 pum.
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Duration of a Time Step (At): The stability criterion for the finite difference
approximation to the diffusion equation presented in (4) requires that

(Ax)?

At< 'y p (5)
which is a more stringent requirement for larger values of Dy or smaller values
of Axz. We use Ax = 11 wm which is the diameter of lung epithelial cells, and
Dy = 3.18 x 107" m? - s7! such that in order to satisfy the stability criterion,
we need At < 2.6 h. We found that setting At = 2 min satisfies the stability
criterion of the diffusion equation and accurately captures the behaviour of the
system.

Virion Release Rate (gyv): As seen above, 7. = 7 h after becoming infected,
an epithelial cell will start secreting virions. In the model, secreting cells release
virions at a constant rate until the cell is considered “dead”, at which time
secretion is instantaneously stopped. This “shape” for the viral burst was chosen
arbitrarily as very little is known about the shape, duration, and magnitude of
the viral burst. We found that setting the release rate of virions by secreting
cells to gy = 0.05 virions per hour per secreting cell in our ABM yields a good
fit of the simulation to the experimental data.

3.3 Setting Up the Model

The infection of the epithelial cell monolayer with influenza virions in our in
vitro experiments proceeds as follows. An inoculum containing 50, 000 competent
virions (or 50,000 plaque forming unit or pfu) is deposited evenly on the cell
monolayer. The solution is left there for one hour to permit the infection of the
cells and at time ¢ = 0 h, the inoculum is harvested with a pipette. At that
time, not all the virions are removed: some are trapped in the mucus and get
left behind.

To avoid having to model the initial experimental manipulations and the
uncertainty in the viral removal, we start the ABM simulations at time ¢t =2 h
post-harvest. At that time, a fraction of cells have been infected by the inoculum
and a few virions have been left behind at harvest-time. To account for this fact,
we define two more parameters, V5 and Cj, which give the number of virions
per cell and the fraction of cells in the containing stage at time ¢ = 2 h post-
harvest, the initialization time of our simulations. In order to determine the
number of virions per cell, we also defined Nq)is, the number of epithelial cells
in the experimental well. Parameters Ncos, Vo and Cy were set as follows.

Number of Epithelial Cells in the Experimental Well. (Ngens): We
computed Ncejis, the number of epithelial cells in the experimental well using the
measured diameter of the epithelial cells, Az = 11 wm, and the known area of the
experimental well, Ayen = 113 mm?. Assuming that the sum of the surface area
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of all the epithelial cells fully fills the well’s area and that the surface area of
each cell is roughly circular, such that Acen = m(Az/2)?, we can compute the
number of epithelial cells in the experimental well

Agell

Nce s =
B (Ax/2)?

(6)

113 mm?
T 7 (11 pmy2)>? ™)

~ 1,200,000 cells . (8)

For our ABM, we found that setting the well radius of Ry = 160 cells, which
corresponds to about 93,000 simulated cells, is sufficient to accurately capture
the behaviour of a full scale simulation.

Initial Number of Virions per Epithelial Cell (Vp): At time ¢ = 2 h post-
harvest, the time at which we begin the simulation, 635+ 273 virions were found
on the monolayer. Hence, we can compute the number of virions per epithelial
cell present on the monolayer at time ¢ = 2 h post-harvest,

635 virions
Vo = 9
0 Ncells ( )

~ 5.3 x 10~ virions/cell , (10)

which corresponds to the number of virions per cell at initialization time.

Fraction of Cells Initially Infected (Co): The parameter Cy gives the frac-
tion of cells which are initially set to the containing state. Those are the cells that
were infected during incubation with the inoculum. Staining the ALI monolayer
with viral antigen at ¢ = 8 h post-harvest revealed that approximately 1.8% of
the cells contained influenza protein, i.e. were producing virions. Hence, we set
Co = 0.018 in the ABM such that 1.8% of cells are set to the containing stage
at initialization time.

4 Preliminary Results

In its current implementation, the ABM has 11 parameters shown in Table 1. A
screenshot of the simulation grid is presented in Fig. 4, and Fig.5 presents the
dynamics of the various cell states and viral titer as a function of time against
preliminary experimental data. We can see that the ABM provides a reasonable
fit to the experimental data.
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Table 1. The 11 parameters used in the computer model, with a short description
of their role and their default value. In the Source column, C stands for computed,
M for measured experimentally, L. for taken from the literature, and F for parameters
adjusted in order to fit the model to the experiments.

Symbol Description Value Source
Fixed Parameters
Ryen radius of simulation well in # cells 160 cells C (Sect. 3.3)
At duration of a time step 2 min/time step  C (Sect. 3.2)
Az grid spacing (diameter of epithelial cells) 11 pm M (Sect. 3.2)
7. duration of the viral replication cycle 7h L (Sect.3.2)
T4 £ 04 infectious cell lifespan (mean + SD) 23+6h C (Sect.3.1)
Adjusted Parameters

Co fraction of cells initially infected 0.018 F (Sect. 3.3)
Vo  initial dose of virions per cell 5.3 x 107* virions F (Sect. 3.3)
k  infection rate of cells by virions 8 /h F (Sect.3.1)
gv  rate of viral production per cell 0.05 /h F (Sect.3.2)
Dy diffusion rate of virions 3.18 x 107" m?/s F (Sect. 3.2)

Fig. 4. Screenshot of the simulation taken at 18 h post-harvest for a simulated grid
(well) containing 5,815 cells using the parameter values presented in Table 1. The
cells are color-coded according to their states as in Fig. 1 with healthy cells in white,
containing cells in green, secreting cells in red, and dead cells in black. The magenta
overlay represents the concentration of virions at each site with more opaque magenta
representing higher concentration of virions.
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Fig. 5. Simulation results using the parameter set presented in Table 1. The lines
represent the fraction of epithelial cells that are healthy (solid black), containing the
virus (dashed grey), secreting the virus (dashed black), or dead (dotted black), as well
as the number of competent virions (or pfu) on the right y-axis (dash-dot-dot black).
The diamonds and the circles represent experimental data for the viral titer and the
fraction of cells infected, respectively.

Note added in press: Recent experiments have revealed a highly variable dynamic range
of the replication rate, but the basic structure of the model remains intact.

5 Proposed Extensions

As mentioned earlier, the current model is extremely simple, and we plan to
gradually increase the level of detail.

One of the first improvements would be the inclusion of different cell types.
The epithelial cells that make up the simulation grid are assumed to be a homo-
geneous population of cells, with no distinction, for example, between ciliated
and Clara cells. We plan to add more cell types; each cell type would have the
same four states illustrated in Fig.1, and the transitions between those states
would still be dictated by the same processes, but the value of the parameters
controlling these processes would differ from one cell type to another and from
one virus strain to another. With such a model, we could, for example, explore
differences in the spread of the infection on a sample constituted of 90% cilliated
cells and 10% Clara cells against the spread on a sample constituted of 50%
ciliated cells and 50% Clara cells.

We also plan to break existing parameters into sub-models. Let us illustrate
this process with an example. At the moment, we describe viral release using the
parameter gy which describes the constant rate at which virions are released by
secreting cells. In the future, this simple model of viral release could be replaced
by a much more elaborate intracellular sub-model of viral assembly and release
that takes account of factors such as viral strain and cell type to more accurately
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depict the dynamics. These sub-models could either be agent-based simulations
or ordinary differential equations when the spatial distribution of the agents
involved is not critical.

We also would like to refine the process of viral absorption, which is currently
described by the parameter k. It has recently been shown [28,29] that suscep-
tibility to a particular influenza strain is different depending on the cell type.
For example, human influenza virions preferentially bind to sialic acid (SA)-a-
2,6-Gal terminated saccharides found on the surface of ciliated epithelial cells of
the upper respiratory tract while avian influenza H5N1 prefers (SA)-a-2,3-Gal
found on goblet cells in and around the alveoli [28,29]. One easy way to take this
type of heterogeneity into consideration would be to define a virion absorption
rate rather than an infection rate, and consider different production rates, gy,
for each strain of virus and for each cell type. Eventually, the parameter for
the absorption rate of virions, for example, could be broken into a sub-model
describing the molecular processes involved in virion absorption which would
explain in which way virus strains and cell receptors affect its value.

Eventually, when mechanisms such as viral absorption and release have been
modified to take on the form of molecular sub-models, the ABM will be calibrated
against a few different known influenza strains. This will provide pointers as
to which characteristics of an influenza viral strain drive these mechanisms.
Ultimately, we hope to be able to take a newly isolated influenza strain, infect
our in vitro system, and then fit our ABM to the experimental results. Doing
so would reveal the value of the parameters characterizing this particular strain
and hence reveal the lethality and infectivity of that strain.

6 Simulation Platform

The model is implemented on the MASyV (for Multi-Agent System Visualiza-
tion) simulation platform. MASyV facilitates the visualization of simulations
without the user being required to implement a graphical user interface (GUI).
The software uses a client-server architecture with the server providing I/0O and
supervisory services to the client ABM simulation. The MASyV package con-
sists of a GUI server, masyv, a non-graphical command-line server for batch runs,
logmasyv, and a message passing library, ma message, containing functions to
be used by the client to communicate with the server. The simulation framework
is written in C and was developed on a Linux (Debian) system.

With the MASyV framework, a user can write a simple two-dimensional client
program in C, create the desired accompanying images for the agents with a paint
program of her/his choice (e.g. GIMP), and connect the model to the GUI us-
ing the functions provided in the message passing library. The flexible GUI of
MASyV, masyv, supports data logging and visualization services, and it supports
the recording of simulations to a wide range of video formats, maximizing porta-
bility and the ability to share simulation results collaborators. The GUI, masyv,
is built using GTK+ widgets and functions. For better graphics performance,
the display screen widget, which displays the client simulation, uses GtkGLExt’s
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OpenGL extension which provides an additional application programming in-
terface (API) enabling GTK+ widgets to rapidly render scenes rapidly using
OpenGL’s graphics acceleration capabilities. Capture of the simulation run to
a movie file requires the software Transcode [30] and the desired compression
codecs be installed on the user’s machine.

For non-graphical batch runs, a command-line interface, logmasyv, is also
implemented. This option is designed to run multiple simulation runs (e.g.for
parameter sweeps on large computer grids). This option requires only that a
C compiler be available, and it eliminates the substantial CPU overhead cost
incurred by the graphical services. Communication between the server program
(either masyv or logmasyv) and the client simulation is done through a Unix
domain socket stream.

MASyV is open source software distributed under the GNU General Public
License (GNU GPL) and is freely available for download from SourceForge [31].
It has a fixed web address, it is well maintained and documented, has an on-
line tutorial, and comes with a “Hello World” client simulation demonstrating
how to implement a new client and how to make use of the message passing
library. MASyV also comes with a few example pre-programmed clients such as
an ant colony laying and following pheromone trails (ma ants) and a localized
viral infection (ma immune) which was used in [11,32]. Our influenza model was
derived from ma immune and is now distributed with MASyV under the name
ma virions.

7 Conclusion

We have described the implementation of an agent-based simulation built to re-
produce the dynamics of the in vitro infection of a lung epithelial cell monolayer
with an influenza A virus. At this time, model development is still in its pre-
liminary stage, and many details remain to be elucidated. However, preliminary
runs with biologically realistic parameter values have yielded reasonable results
when compared with the currently available experimental data.

Recent results from the in vitro experiments revealed that large numbers
of virions were being trapped by the mucus. While at 1 h post-harvest viral
assays revealed that the experimental well contained about 4,701 4= 180 virions,
it contains a mere 6354273 virions only 1 h later at 2 h post-harvest and 720+240
virions at 4 h post-harvest. These new results suggest that trapping of the virions
by the mucus and the absorption of virions by the epithelial cells upon infection
plays a crucial role in controlling the rate of spread of the viral infection. In
light of these new results, we plan to direct our future research towards better
characterizing the role of the mucus in viral trapping and its effect on viral
infectivity.

This recent development is an excellent example of just how much we still need
to learn about influenza infection. It also shows that our strategy of combining
in vitro and in silico tools will prove a useful tool in this quest.



Modeling Influenza Viral Dynamics in Tissue 35

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

World Health Organization: Influenza. Fact Sheet 211, World Health Or-
ganization (Revised March 2003) Available online at: http://www.who.int/
mediacentre/factsheets/fs211/

. Webster, R.G., Peiris, M., Chen, H., Guan, Y.: H5N1 outbreaks and enzootic

influenza. Emerg. Infect. Dis. 12(1) (2006) 3-8

. Tumpey, T.M., Basler, C.F., Aguilar, P.V., Zeng, H., Solérzano, A., Swayne, D.E.,

Cox, N.J., Katz, J.M., Taubenberger, J.K., Palese, P., Garcia-Sastre, A.: Char-
acterization of the reconstructed 1918 Spanish influenza pandemic virus. Science
310(5745) (2005) 77-80

. Tumpey, T.M., Garcia-Sastre, A., Taubenberger, J.K., Palese, P., Swayne, D.E.,

Pantin-Jackwood, M.J., Schultz-Cherry, S., Solérzano, A., Van Rooijen, N., Katz,
J.M., Basler, C.F.: Pathogenicity of influenza viruses with genes from the 1918 pan-
demic virus: Functional roles of alveolar macrophages and neutrophils in limiting
virus replication and mortality in mice. J Virol 79(23) (2005) 14933-14944

. Belz, G.T., Wodarz, D., Diaz, G., Nowak, M.A., Doherty, P.C.: Compromized

influenza virus-specific CD8"-T-cell memory in CD4*-T-cell-deficient mice. J.
Virol. 76(23) (2002) 12388-12393

. Fritz, R.S., Hayden, F.G., Calfee, D.P., Cass, L.M.R., Peng, A.W., Alvord, W.G.,

Strober, W., Straus, S.E.: Nasal cytokine and chemokine response in experimental
influenza A virus infection: Results of a placebo-controlled trial of intravenous
zanamivir treatment. J. Infect. Dis. 180 (1999) 586-593

. Kilbourne, E.D.: Influenza. Plenum Medical Book Company, New York (1987)
. Larson, E., Dominik, J., Rowberg, A., Higbee, G.: Influenza virus population

dynamics in the respiratory tract of experimentally infected mice. Infect. Immun.
13(2) (1976) 438-447

. Bocharov, G.A., Romanyukha, A.A.: Mathematical model of antiviral immune

response III. Influenza A virus infection. J. Theor. Biol. 167(4) (1994) 323-360
Baccam, P., Beauchemin, C., Macken, C.A., Hayden, F.G., Perelson, A.S.: Kinetics
of influenza A virus infection in humans. J. Virol. 80(15) (2006)

Beauchemin, C., Samuel, J., Tuszynski, J.: A simple cellular automaton model for
influenza A viral infections. J. Theor. Biol. 232(2) (2005) 223-234 Draft available
on arXiv:q-bio.CB/0402012.

Celada, F., Seiden, P.E.: A computer model of cellular interactions in the immune
system. Immunol. Today 13(2) (February 1992) 56—62

Efroni, S., Harel, D., Cohen, I.LR.: Toward rigorous comprehension of biological
complexity: Modeling, execution, and visualization of thymic T-cell maturation.
Genome Res. 13(11) (2003) 2485-2497

Meier-Schellersheim, M., Mack, G.: SIMMUNE, a tool for simulating and analyzing
immune system behavior. arXiv:cs.MA /9903017 (1999)

Polys, N.F., Bowman, D.A., North, C., Laubenbacher, R.C., Duca, K.: PathSim
visualizer: An Information-Rich Virtual Environment framework for systems bi-
ology. In Brutzman, D.P., Chittaro, L., Puk, R., eds.: Proceeding of the Ninth
International Conference on 3D Web Technology, Web3D 2004, Monterey, Califor-
nia, USA, 5-8 April 2004, ACM (2004) 7-14

Warrender, C.E.: CyCells. Computer Software distributed on SourceForge under
the GNU GPL at: http://sourceforge.net/projects/cycells. (2005)
Segovia-Juarez, J.L., Ganguli, S., Kirschner, D.: Identifying control mechanisms of
granuloma formation during M. tuberculosis infection using an agent-based model.
J. Theor. Biol. 231(3) (2004) 357-376



36

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

C. Beauchemin, S. Forrest, and F.T. Koster

Warrender, C., Forrest, S., Koster, F.: Modeling intercellular interactions in early
Mycobaterium infection. B. Math. Biol. (in press)

Edelstein-Keshet, L., Spiros, A.: Exploring the formation of Alzheimer’s disease
senile plaques in silico. J. Theor. Biol. 216(3) (2002) 301-326

Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artif.
Life in press (2006)

Gerety, R., Spencer, S.L., Pienta, K.J., Forrest, S.: Modeling somatic evolution in
tumorigenesis. PLoS Comput. Biol. in review (2006)

Gonzdlez-Garcia, 1., Solé, R.V., Costa, J.: Metapopulation dynamics and spatial
heterogeneity in cancer. PNAS 99(20) (2002) 13085-13089

Maley, C.C., Forrest, S.: Exploring the relationship between neutral and selective
mutations in cancer. Artif. Life 6(4) (2000) 325-345

Maley, C.C., Forrest, S.: Modeling the role of neutral and selective mutations
in cancer. In Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S., eds.:
Artificial Life VII: Proceedings of the 7th International Conference on Artificial
Life, Cambridge, MA, MIT Press (2000) 395-404

Maley, C.C., Reid, B.J., Forrest, S.: Cancer prevention strategies that address
the evolutionary dynamics of neoplastic cells: Simulating benign cell boosters and
selection for chemosensitivity. Cancer Epidem. Biomar. 13(8) (2004) 1375-1384
Strain, M.C., Richman, D.D.; Wong, J.K., Levine, H.: Spatiotemporal dynamics
of HIV propagation. J. Theor. Biol. 218(1) (2002) 85-96

Zorzenon dos Santos, R.M., Coutinho, S.: Dynamics of HIV infection: A cellular
automata approach. Phys. Rev. Lett. 87(16) (2001)

Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N., Kawaoka, Y.: Influenza
virus receptors in the human airway. Nature 440(7083) (2006) 435-436

van Riel, D., Munster, V.J., de Wit, E., Rimmelzwaan, G.F., Fouchier, R.A., Oster-
haus, A.D., Kuiken, T.: H5N1 virus attachment to lower respiratory tract. Science
312(5772) (2006) 399 Originally published in Science Express on 23 March 2006.
Ostreich, T., Bitterberg, T., et al.: Transcode. Computer software distributed
under the GNU GPL at: http://www.transcoding.org. (2001)

Beauchemin, C.: MASyV: A Multi-Agent System Visualization package.
Computer software distributed on SourceForge under the GNU GPL at:
http://masyv.sourceforge.net. (2003)

Beauchemin, C.: Probing the effects of the well-mixed assumption on viral in-
fection dynamics. J. Theor. Biol. in press (2006) Draft available on arXiv:q-
bio.CB/0505043.



Cellular Frustration: A New Conceptual Framework for
Understanding Cell-Mediated Immune Responses

F. Vistulo de Abreu"z, E.N.M. Nolte—‘Hoen2’3, C.R. Almeidaz, and D.M. Davis?

! Depto. Fisica, Universidade de Aveiro, 3810 Aveiro, Portugal
abreu@fis.ua.pt
% Division of Cell and Molecular Biology, Imperial College, London, UK
{d.davis, crdal}@imperial.ac.uk
3 Department of Biochemistry and Cell Biology, Utrecht University, The Netherlands
e.n.m.nolte@vet.uu.nl

Abstract. Here we propose that frustration within dynamic interactions
between cells can provide the basis for a functional immune system. Cellular
frustration arises when cells in the immune system interact through exchanges
of potentially conflicting and diverse signals. This results in dynamic changes
in the configuration of cells that interact. If a response such as cellular
activation, apoptosis or proliferation only takes place when two cells interact
for a sufficiently long and characteristic time, then tolerance can be understood
as the state in which no cells reach this stage and an immune response can
result from a disruption of the frustrated state. Within this framework, high
specificity in immune reactions is a result of a generalized kinetic proofreading
mechanism that takes place at the intercellular level. An immune reaction could
be directed against any cell, but this is still compatible with maintaining perfect
specific tolerance against self.

Keywords: self-nonself discrimination, tolerance, homeostasis, cellular
frustration, generalized kinetic proofreading.

1 Introduction

Distinguishing self from non-self is understood in many systems at the level of
specific molecular processes between individual cells. In contrast, relatively little
progress has been made in understanding how the complexity of interactions between
populations of many different cells contribute to the functional discrimination
between self and non-self. Some theoretical models have attempted to study such
complicated interactions at the population level [1-5]. Broadly, present theoretical
models of both innate and adaptive immunity assume that effector functions are
triggered when a non-self pattern is recognized. In all these models, recognition is not
the outcome of an optimization process; rather it is a non-linear (often binary)
response to a pattern. This happens when an antibody binds to an antigen (as modeled
by affinity shape space models [6,7]), or when a T cell detects agonist peptide-MHC
complexes (pMHC) [2,8,9]. High specificity in the recognition process is helped by
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kinetic proofreading mechanisms [10-12] during the scanning of APC ligands.
Although, strong discrimination can be achieved during an intercellular interaction,
this is likely insufficient in establishing a reliable and safe discrimination of self and
nonself.

Broadly, there are usually two points of view regarding how a binary response to
a pattern can result in a functional immune system: Either that this discrimination
may be imperfect [2, 8, 9] and hence killing self cells happens at a certain rate,
even in the absence of antigen, or that alternatively it is assumed that a certain
pattern (which can even be the ubiquity of certain peptides) allows perfect
discrimination. Both these approaches raise questions that only future research may
clarify. For instance, the notion that some cells are killed ‘by mistake’ is inefficient
and requires a continuous supply of new cells. This in turn requires functional
selection of, for example, T cells throughout adult lifetime, perhaps using the adult
thymus. It remains uncertain how adult thymus involution can be compatible with
this (discussed further in [2]). The notion that patterns can perfectly define self and
non-self is not easily reconcilable with evidence that pathogens can often mimic self
patterns. In addition it is unclear how immune cells would robustly coordinate their
responses and minimize the existence of holes in shape space (that is, regions of non-
self peptide sequences not covered by any immune cell) [8, 9, 13], while keeping
autoimmunity to a minimum.

Here, motivated by some recent experimental findings in immunology and a recent
theoretical work in evolutionary biology, we derive a new conceptual framework to
understand how an adaptive immune system could work. Self and nonself emerges as
a whole system property: the selfis defined as the set of cells that can keep short lived
intercellular contacts, without ever mounting an immune reaction. Our assumptions
require the introduction of a new concept, cellular frustration. Cellular frustration
enables accomplishing two apparently incompatible tasks, namely, a highly specific
and sensitive reaction against nonself, together with the possibility of maintaining
absolute tolerance in the absence of the antigen.

2 What Is Cellular Frustration?

Frustration can be simply understood through the following example: Can one be
friends of two mutual enemies? Frustration arises because no stable configuration
exists that simultaneously satisfies all the elements interacting in the system.
Consequently, the system fluctuates among several possible configurations. Frustration
has already been studied in the context of immunology by Bersini and Calenbuhr [14,
15], who showed that a frustrated idiotypic network could display rich dynamics with
chaotic behavior, and that frustration in these systems helped maintain tolerance after
antigen detection.

In the present work frustration operates in a different way and with a different
purpose. The mechanism we propose received inspiration from a work discussing the
origin of species [16]. These authors showed that robust reproductive barriers emerge
especially when no barriers exist at the level of individual mating rules. This
apparently paradoxical result resulted from the existence of a complex (competitive)
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mating dynamics that strongly enhanced some mating associations over others (i.e.,
the assortativeness). Hence, mating barriers at the individual level emerged from the
mating dynamics within the population.

Establishing an immune system has some parallels with this view of speciation in
that tolerance and high specificity in immune responses arise in a system with high
degeneracy, i.e. where many cells can interact with each other. The situation is
nevertheless more complex in an immune system because tolerance to self requires
that interactions between ‘healthy’ self cells should not be productive in terms of
effector functions.

Consider three cells, A, B and C, each with a diverse set of ligands and receptors.
For the purpose of simplicity, assume that each cell can only maintain interactions
with one cell at a time. Consequently, if two cells are conjugated and a third cell starts
an interaction with one of the cells in the conjugate, the conjugated cell has two
alternatives: either it engages in this new interaction or it does not favor the new
interaction and maintains the former one. This decision process implies that cells
perform an integration of the signals they receive and respond after an optimization
process. Cellular frustration arises if a chain of interactions, as shown in Fig.1,
persists such that interactions are never long-lived.

o

J

Fig. 1. Cellular frustration among three cells. A system of cells is frustrated if intercellular
interactions do not allow long-lived interactions to emerge. This is schematically presented
here: Initially, cells A and B are conjugated (configuration in the first square). Then C interacts
with cell B, which prevents maintaining the interaction between cells A and B and leads to the
second configuration. If then cell A approaches cell C, the conjugate CB is destroyed and a new
conjugate AC is formed (third configuration). As in other, physical or social, systems, no stable
configuration is reached, and the system fluctuates over several possible states.

Cellular frustration requires several assumptions:

Assumption 1: Cellular Crossreactivity
Cells can interact and potentially react with a large set of other cells.

Assumption 2: Cells are selective

Each cell selects among alternatives and can only maintain interactions with a limited
number of cells. (Here, we use the approximation that one cell can only maintain
long-lasting interactions with one other cell at a given time).
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Assumption 3: Cellular Conflict

Ligands and receptors in different cells of the immune system lead to conflicting
interactions (for instance, while one cell promotes interaction with one other cell, this
other cell may promote interactions with another different cell, provided it is given
the opportunity).

A fourth assumption will also be required in order to render cellular frustration a
functionally powerful mechanism that establishes both tolerance and selective
reactivity against non-self.

Assumption 4: An effector response takes place only after two cells have been
interacting for a characteristic amount of time.

3 Evidence for Cellular Frustration?

Although no experimental proof of the cellular frustration concept exists, here we
argue that important experimental results are at least consistent with the possibility.
Readers not initially concerned with experimental details may skip this section
without any loss in understanding the model proposed.

Assumption 1: Cellular crossreactivity. There is extensive experimental evidence
that immune cells display a huge variety in their capacity to interact with other cells.
Dendritic cells (DC), for example, can interact with CD4+ or CD8+ T cells,
regulatory T cells [17], B cells [18], other DC [19], granulocytes [20], Natural Killer
cells [21], or with non-hematopoietic cells, such as splenic stroma cells [22].

There is also wide variety in T cell interactions. CD4" T (helper) cells can be
activated by cells that present antigen in the context of class II Major
Histocompatibility Complex (MHC), such as DC, macrophages and B cells. In
addition, T cell function can be stimulated by NK cells [23] and mast cells [24]. T
cells can also contact many different types of target cells in the effector phase.
Cytotoxic T cells for example monitor all the cells of the body. Interestingly, even
neuronal cells have been described to influence T cell function [25].

Interactions among T cells themselves play an important role in regulatory
activities of the immune system. Regulatory T cells can either target effector T cells
directly [26] or modulate the T cell activating capacity of APC [17, 27]. Anergic T
cells in their turn can pass on immune responsiveness by down regulation of other T
cell responses [28, 29]. Moreover, pMHCs from APC can be acquired by T cells and
internalized in such a way that T cells became sensitive to peptide-specific lysis by
neighboring T cells [30]. Hence, immune cells are capable of interacting with a wide
variety of other cells.

Assumption 2: Immune system cells are selective. During the induction phase of an
immune response it is likely that immune cells encounter a variety of stimulatory
cells. An important question is whether cells in this case select for interaction with
cells that offer the highest stimulus. Regarding the T cell-APC interactions, T cells
were observed to have short interactions with different APC, before engaging in a
long-term interaction with a particular APC [31, 32]. The sequential encounters of T
cells could indicate selection of the APC that offers the strongest stimulus. In favor of
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this hypothesis, Valitutti’s group recently showed that helper T cells are indeed able
to scan several adjacent APCs, thereby selecting for the APC loaded with the highest
amount of antigen [33].

Assumption 3: Intercellular Signals are Bidirectional and potentially conflicting.
Due to the use of one-sided read-out systems in immune cell stimulation studies,
interactions between immune cells have often been regarded as unidirectional in terms
of information transfer. However, evidence is now accumulating that during immune
cell interaction there is an exchange of signals, leading to changes in behavior of all
cells involved. Numerous membrane-associated proteins that bind receptors on the
opposing cell surface have been shown to possess signal transduction capacity. This
process of “reversed signaling” is most obvious in members of the Tumor Necrosis
Factor (TNF) family members, like TNF, CD40L, FasL, TRAIL and others [34].

Although the interaction between APC and T cells has long been regarded as a
unidirectional process leading to a change in activation status of the T cell, potential
activation of signaling pathways within the APC during this interaction has been
tested sporadically. For example cross-linking of MHC class II molecules by TCR or
antibodies can lead to changes in adhesive capacity [35], apoptosis, or maturation
[36]. Also interactions between T cells and mast cells were found to be bidirectional,
with mast cells being able to activate T cells, and to release both granule-associated
mediators and cytokines as a result of interaction with T cells [24].

Another example of bidirectionality between immune cells is the interaction
between NK cells and DC [37]. During NK-DC interactions, activated NK cells can
induce DC maturation. Cytokines produced by activated DC, on the other hand,
enhance the proliferation, cytokine production and cytotoxicity of NK cells.

Assumption 4: An effector function takes place only if two cells have been
interacting for a characteristic amount of time. This assumption has also been
receiving increasing experimental support. The signal strength of T cell stimulation
by APC can be determined by both the concentration of antigen, the presence of co-
stimulation and the duration of the T cell-APC interaction [38]. Prolonged interaction
with APC was shown to be important for both effective T cell priming [39] and
polarization of the T cell response, e.g. into different helper subsets [40]. Importantly,
in vivo studies also show that interaction times of CD4+ and CD8+ T cells with APC
are significantly increased in the presence of specific antigen compared to T cell-APC
interaction times in the absence of antigen [32]. It therefore seems realistic to assume
that in order to establish a productive contact, i.e. a contact that leads to induction of
T cell effector function, prolonged interaction between T cells and APC is a necessity.
Although for induction of a cytotoxic response by NK cells and CTL interaction times
can be much shorter than in the priming phase, a minimal duration of the interaction
between effector and target cell is nevertheless necessary in order to elicit effector cell
function [41]. There is a significant body of evidence that the assembly of an
immunological synapse occurs in stages (reviewed in [42, 43]). Thus, cells must
interact for a certain amount of time to elicit at least some types of responses.

Thus, cells require a finite amount of time and only after a characteristic time is an
effector function triggered.
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4 Cellular Frustration Can Establish the Principles of an Immune
System

The purpose of this work is to show that cellular frustration provides an alternative
framework that explains self-nonself discrimination not as a two-cell process, but as
an emerging principle of the whole system. Cellular frustration is compatible with a
somatically generated immunological repertoire; it avoids the existence of holes in
shape space, while maintaining perfect specific tolerance.

To understand why this can happen we question whether there can be a system of
mutually interacting elements, which can all potentially react but never reach this
state because they are frustrated due to interactions with other elements in the system?
Here by interaction we mean the process during which two cells sense each others
ligands through their receptors and by reaction it is meant an effector function that
only takes place if two cells interact for a time longer than a characteristic time T.

As it is known from the study of the stable roommate problem [44], it is possible to
define a set of mutually interacting elements that never reach the reaction state
described above. To exemplify this, consider a simple system made of 3 cells, A, B and
C. Assume that each of these cells promote interactions according to an interaction list
(Table 1), in such a way that, if given a chance, they always promote interactions with
cells that are on upper positions in their interaction list (IL). Then it is easy to verify that
all associations are unstable due to the possibility of contacting with the third cell.

Table 1. Interaction List (IL) for a system of three frustrated cells. In each column the IL of the
cell on the top line is defined. According to this list, cell A tries to bind to cell C, if it is
unbound: however,if given the opportunity, it would bind to cell B and detach from cell C. This
sequence of interactions corresponds to the one described in Fig.1.

A B C
B C A
C A B

Consider a simple algorithm in which at each time-step each cell is given an
opportunity to interact with another cell. Thus, in each time-step, a new conjugate can
be established and a former one terminated. In the simple case in Table 1, at each time-
step the probability that a new interaction is established at the expense of a former
interaction, is 1, because there is always one bound cell that interacts but prefers another
cell. In this particular system, provided interactions do not lead to instantaneous
reactions, the system is frustrated, and thus in a tolerant or homeostatic state.

An interesting situation arises when one adds a new cell into the frustrated system.
If one considers that there are no identical cells, then cell D has to appear on the
bottom of the ILs of all the other cells, otherwise the system comes out of the tolerant
state. Hence, to keep the system in the tolerant state, the fourth cell D has very
specific ligands. Yet, the IL of cell D is arbitrary. Hence, tolerance or ‘foreignness’ is
determined by the system itself and the system is very sensitive relatively to the
introduction of new cells. In fact, from all the possible ILs for cell D, only 1/27<4%
keep the system frustrated in this simple system.
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Another important point to remark is that if cell D behaved exactly as one of the
other cells already present in the system then the system would not stay in the tolerant
state. This shows that in this model cells are recognized according to how they
function with respect to the whole system. This is a useful property for a protection
system, because it implies that clonal proliferation of an infected cell would not be a
successful strategy for a pathogen. Rather pathogens need to mutate in order to
successfully infect the host. Further, it also shows that a certain level of arbitrariness
exists concerning the definition of the ligands and receptors in the system. What is
required is that cell A senses cell B with maximal avidity, cell B senses with maximal
avidity cell C, and so on. This says nothing about what cell’s A receptors are,
allowing them to be somatically defined, as required in an adaptive immune system.

Although the previous solution allows the system to remain in the frustrated state,
it requires that cell D has low avidity relative to all the other cells in the system. This
may not always be achieved in a particular system provided thymic positive selection
has selected reactive cells to span uniformly a complete space of sequences. To see
this more clearly, imagine that a ligand or a receptor are defined through a sequence
of bits and that affinity is proportional to the number of bits in common between the
ligand and the receptor (i.e. through a Hamming distance). Then, provided the set of
receptors in the system is uniformly distributed, it is not possible to define a ligand
that is simultaneously more anticorrelated with all the receptors in the system. This
remark is important, because it shows that thymic selection may have a double
function which is not only to select reactive cells, but also to provide a uniform
distribution of receptors and ligands. A more detailed analysis of thymic repertoire
selection in the light of the present theory will be discussed in a forthcoming paper.

The previous results are restricted to populations with a small number, N, of
elements. Can we generalize these results to arbitrary N? For N odd it is easy to
establish that there exists a system exhibiting full frustration. Considering that the cell
at position j at the interaction list of cell i is L;(j), then the list verifies the requirement:

Li(j)= L.(N-j), where u= Lj) . (1)

Hence, if cell i has on the top position (j=1) of its IL, cell j, then cell j has on the
bottom of its IL cell i. This simple rule forces frustration. For a system with an odd
number of elements, it then becomes straightforward to show that such a system never
attains a stable configuration, as there is always at least one unbound element that is
at the top position of the IL of one in the system. Consequently it is always possible to
destabilize at least one pair of bound cells.

The same argument does not apply to systems with N even, in which case the
system can converge to a stable configuration. However, due to the complexity of the
cellular interactions, for populations with N even the system converges very slowly to
the stable solution. In Fig.2 we see that the number of iterations required grows
exponentially fast with N. Hence, although for N even the system has a stable
configuration, the dynamics of the system is governed by the proximity to a
computationally hard problem [45]. Hence, from a biological point of view, the
system behaves as in the N odd case. And in fact the duration of cellular contacts
behaves as in the N odd case (Fig.2 (left)).

Fig.2 (left) also shows that interactions’ lifetimes decay exponentially. This is not
an obvious result, because Almeida and Vistulo de Abreu [16] obtained a power law
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decay. However, a fundamental difference exists between both models. In the present
case interaction lists have a particular order that establishes a global frustration state
in the system. On the contrary, in [16] lists were random which allowed a much
greater diversity of interactions lifetimes. Hence, in that work, power law (scale free)
behavior reflected the absence of a typical lifetime.
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Fig. 2. Left: Frequency of interactions that lasted T iterations in populations with 2/ or 20
elements. These histograms were calculated using one population for 10° iterations. The first
10’ where not considered to avoid including transient effects. Right: The number of iterations
required to reach the stable configuration for a population with N even. There is an exponential
growth of the number of iterations N, required: N, ~ exp(0.8N). For a population with N=20,

it

around 10’ iterations would be required.

In order to better understand this result consider a conjugate formed between cells i
and r. At each time-step each cell has a probability respectively p and ¢ to find a
higher ranked cell to interact with, and to terminate the former i-r conjugate. Hence,
the probability that the i-r conjugate terminates is:

P=p+q-pq . (2
The probability that a conjugate lives for exactly T time-steps is then:
P.=(1-P)"" P. (3)

This equation implies that any conjugate displays a typical exponential lifetime decay
behavior: P; =(1-P)"' P= P/(1-P) exp(-P1) ~ exp(-P7). In the particular case of the
IL in (1), equation (2) is simplified because g=1-p, which leads to P=1-p+p>.
Hence, in this case P varies between 3/4 and 1, whereas in the most general case of
random ILs, P can vary between O and 1. This is fundamentally different because it
implies that in the former case interactions are short-lived, whereas in the last case
there are interactions that never terminate. In order to calculate N;, a sum over the
possible interactions has to be considered. Assuming for simplicity that all conjugates
occur with an equal frequency fp, then we get:

b b
N;=[fp A=P)"'PdP ~[1-P)" P aP . (4)

The integral can be integrated by parts. The difference between the two cases is now
in the correct choice of the limits of integration a and b. In the frustrated case a=3/4
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and b=1, leads to: N, ~ exp(—1.387) . In the numerical simulations (Fig.3) we obtained
exponents close to 1, instead of 1.38. The difference between the two values is due to
the crude approximation of fp used above (see Fig.3 (right)). In the random case, we
obtain: N, ~772. Here again the exponent is not the same as the one found in [16]
(which was -2.5), again due to the approximations used. Nevertheless with this
calculation we were able to understand how two distinctive behaviors can be found and
that the power law behavior in N, signals the existence of processes with many different
lifetimes. Hence, Fig.3 shows that, even if the system could display a continuum of
different lifetimes, the frustrated system displays a single well defined lifetime.
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Fig. 3. The distribution function N; (calculated as in Fig.2) converges quickly to the asymptotic
distribution, when the number of cells in the system varies from N=11 to N=501 (Left). The
distribution for N=5/ and N=501 is almost the same, and given by an exponential
N, = Aexp(—7) . This quick convergence shows that the properties of the model do not depend
crucially on the number of cells involved. This shows that the model is robust in the sense that
generalizations to account for spatial effects should not produce different results (provided the
densities are not too low). (Right) The distribution of the rank in the IL occupied by a conjugated
cell in the other cell’s IL. We used a population with N=501. This distribution is directly related
to f, (see equation (4)), which is not uniform as assumed in the calculation of the exponents.

The previous analysis is important to discuss the impact of the introduction of a
new cell into the system. What happens if the frustration is broken? Does the system
break up into a set of long lived interactions (as could happen after introducing a
random cell into the N=3 system discussed above)?

The recursive (self-similar) structure given by (1) provides a simple answer: for
large N, after removing any number of cells from the system, we again obtain a
system in which ILs for the remaining cells have the same structure as the initial ILs.
Hence, if a new randomly generated cell is introduced in the system it can produce a
long lived conjugate and we can view the resulting system as being composed of the
conjugate involving the new cell and the remaining fully frustrated system. This
guarantees that the system remains stable upon introduction of a pathogen.

It should also be remarked that, contrary to the cases where N=3 or N=4, recognition
of the external pathogen should not require an infinitely long-lived binding. Thus, to
define a functional immune system, we invoke assumption 4, and determine that a
response will occur for interactions whose lifetimes significantly exceed a typical
lifetime. For instance, in the example of Fig.2, it could be determined that only if a
conjugate lived for 20 units of time, then an effector function would take place.
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Fig. 4. The distribution N, for the frustrated system with N=50 cells and 1 pathogenic cell with
a random set of ligands. The distribution function was calculated using the same procedure as
in Fig.3. On the left the distribution function is plotted as in Fig.3, showing that a long tail
appears corresponding to long-lived interactions. On the right the same distribution is plotted in
a double logarithmic scale to highlight the power law behavior emerging for the long-lived
interactions.

In order to be more precise, we now consider some numerical examples. Consider
a population with N=51 cells from Fig.3 where one cell has been replaced by a
pathogenic cell, i.e., a cell that presents a foreign peptide. This population can be
simulated constructing the ILs as in (1), for N=51 cells, but where the presence of the
pathogenic cell (say cell 1) in the others cell’s ILs is moved a random number of
positions (up or down). The IL for cell 1 stays the same. In this way we assume that
only the ligands of the pathogenic cell