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Preface

ICARIS 2006 is the fifth instance of a series of conferences dedicated to the
comprehension and the exploitation of immunological principles through their
translation into computational terms. All scientific disciplines carrying a name
that begins with “artificial” (followed by “life,” “reality,” “intelligence” or “im-
mune system”) are similarly suffering from a very ambiguous identity. Their axis
of research tries to stabilize an on-going identity somewhere in the crossroad of
engineering (building useful artifacts), natural sciences (biology or psychology—
improving the comprehension and prediction of natural phenomena) and the-
oretical computer sciences (developing and mastering the algorithmic world).
Accordingly and depending on which of these perspectives receives more sup-
port, they attempt at attracting different kinds of scientists and at stimulat-
ing different kinds of scientific attitudes. For many years and in the previous
ICARIS conferences, it was clearly the “engineering” perspective that was the
most represented and prevailed through the publications. Indeed, since the ori-
gin of engineering and technology, nature has offered a reserve of inexhaustible
inspirations which have stimulated the development of useful artifacts for man.
Biology has led to the development of new computer tools, such as genetic al-
gorithms, Boolean and neural networks, robots learning by experience, cellular
machines and others that create a new vision of IT for the engineer: parallel,
flexible and autonomous. In this type of informatics, complex problems are tack-
led with the aid of simple mechanisms, but infinitely iterated in time and space.
In this type of informatics, the engineer must resign to partly losing control if
he wishes to obtain something useful. The computer finds the solutions by brute
force trial and error, while the engineer concentrates on observing and indicating
the most promising directions for research.

Fifteen years ago, two groups of researchers (one from France at the insti-
gation of Varela and the other from the USA at the instigation of Perelson)
simultaneously bet that, like genetics or the brain, the immune system could
also unleash a stream of computational developments grounded on its mech-
anisms. The first group was more inspired by the endogenous network-based
regulatory aspects of the system. Like ecosystems or autocatalytic networks, the
immune system is composed of a connected set of cellular actors whose con-
centration varies in time according to the interactions with other members of
the network as well as through environmental impacts. This network shows an
additional plasticity since it is subject to structural perturbations through the
appearance and disappearance of these members. The most logical engineering
inspiration lay in the realm of distributed and very adaptive control together
with parallel optimization. The resulting controllers should keep a large degree
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of autonomy, an important emancipation with respect to the designer, a poten-
tiality slowly revealed through their interaction with the world and an identity
not predetermined but constantly in the making.

The second group concentrated all its attention on the way the immune sys-
tem treats and reacts to its exogenous impacts. It insisted in seeing the immune
system, first of all, as a pattern recognition or classifier system, able to separate
and to distinguish the bad from the good stimuli just on the basis of exogenous
criteria and a limited presentation of these stimuli. It successfully stimulated the
mainstream of engineering applications influenced by immunology: new meth-
ods of “pattern recognition,” “clustering” and “classification”. This vision of
immunology was definitely the most prevalent among immunologists and cer-
tainly the easiest to engineer and to render operational. Whether or not this
line of development offers interesting advantages as compared to more classical
techniques, less grounded in biology, the future will tell. However, some mem-
bers of this still modest community realized more and more that the time had
come to turn back to real immunology in order to assess these current lines of
research and to reflect on the possibility of new inspirations coming from novel
or so-far neglected immunological facts: network, homeostasis, danger, are words
appearing more and more frequently in the recent papers. Only a re-centering on
theoretical immunology and a shift from the engineering to the “modelling” per-
spective could allow this turning point. This is how we saw this year’s ICARIS,
as the right time to question the engineering avenues taken so far and to exam-
ine how well they really fit the way theoretical immunologists globally construe
what they study on a daily basis.

To consecrate this re-focusing, the organizers decided to invite four presti-
gious theoretical immunologists to present and debate their views, first among
themselves but equally with the ICARIS community: Melvin Cohn, Irun Co-
hen, Zvi Grossman, Antonio Coutinho. Additionally, they decided to place more
emphasis on the modeling approaches and favored in this conference proceed-
ings papers with a more “biological” than “engineering” flavor. Sixty papers
were submitted among which 34 were accepted and included in the proceedings.
More than for the previous ICARIS, the first half of the papers are about mod-
eling enterprises and the other half about engineering applications. We would
like to thank the members of the Program Committee who did the right job on
their fine selection of the papers and Jon Timmis for his very kind and precious
collaboration.

June 2006 Hugues Bersini and Jorge Carneiro
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Abstract. The classical view on the process of mutation and affinity
maturation that occurs in GCs assumes that their major role is to gen-
erate high affinity levels of serum Abs, as well as a dominant pool of high
affinity memory B cells, through a very efficient selection process. Here
we present a model that considers different types of structures where a
mutation selection process occurs, with the aim at discussing the evolu-
tion of Germinal Center reactions. Based on the results of this model, we
suggest that in addition to affinity maturation, the diversity generated
during the GC reaction may have also been important in the evolution to-
wards the presently observed highly organized structure of GC in higher
vertebrates.

1 Introduction

Vertebrates have evolved a complex immune system (IS) that efficiently con-
tributes to protect them from many infectious and toxic agents. To cope with
such large variety of agents the IS generates a large diversity of lymphocyte re-
ceptors. This occurs through various mechanisms activated during lymphocyte
development. The first one consists in the random recombination of relatively
few gene segments into a full variable (V) region gene of immunoglobulins(Ig)
heavy and light chains, allowing the formation of many different receptors [1].
In higher vertebrates (birds, mammals) the relevance of this mechanism for di-
versity generation in the primary B-cell repertoire varies with different species,
being followed in some of them by other mechanisms like V-region gene conver-
sion or somatic hypermutation (SHM) that act on rearranged V-region genes [2].
This initial repertoire is submitted to selection before B cells reach full maturity,
thus getting purged of overt self-reactivity [1].

During an immune response to a protein antigen (Ag) the SHM mechanism
is triggered in some of the responding, mature B cells. Most mutations are dele-
terious (decrease the antibody (Ab) affinity for Ag) or neutral, but a few may
increase the affinity [3]. This is followed by an increase of serum affinity starting

H. Bersini and J. Carneiro (Eds.): ICARIS 2006, LNCS 4163, pp. 1–8, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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after about the peak of the immune response until it reaches a quasi-plateau
several weeks later [4]. This process, termed affinity maturation, implies that a
selection process for higher affinity Abs takes place during that time. In higher
vertebrates the SMH and selection processes take place at Germinal Centers
(GC) [2]. These are short-lived structures, generated within primary follicles of
secondary lymphoid tissue by migration of Ag-activated lymphocytes, and char-
acterized by intense proliferation and apoptosis of Ag-specific B cells. In contrast,
lower vertebrates do not generate GCs [2] so that SHM during immune responses
to protein Ags takes place more or less diffusely in lymphoid tissue. Correspond-
ingly in them the serum affinity during immune responses increases significantly
less than in higher vertebrates. This indicates a less efficient selection process,
currently attributed to their lack of GCs [2].

A higher rate affinity maturation process requires a more efficient (stronger)
selection than a poorer affinity maturation process. On the other hand, the
higher the efficiency the more specific the selected Abs will be, but the lower
the remaining diversity related to the triggering Ag. However, thinking in evo-
lutionary terms, keeping the diversity in the Ab repertoire seems at least as
important as having the ability to selectively expand B cells producing Abs with
higher specificity. For instance, while a ‘selection structure’ (i.e., GCs) has been
selected for in higher vertebrates, many lower vertebrates have life spans similar
to many higher vertebrates. Also, mutant mice that lack an enzyme essential for
the SHM process get strong intestinal inflammation due to massive infiltration
of normal anaerobic gut flora [5].

Because the more efficient the selection the less the diversity, and because of
the importance of both affinity maturation and diversity, a trade-off between
those two goals possibly emerged during the evolution of vertebrates in those
species endowed with the physiologic possibility to generate GC-like structures.
We hypothesize that such trade-off may have determined the size, life span,
organization, etc. of GCs. In order to approach this issue, we have developed
a simple stochastic/CA hybrid model that allows us to compare the degree of
affinity maturation and diversity generated in different scenarios, intended to
represent evolutionary stages of species with increasing GC size. In this model
the process of affinity maturation within GCs is formally equivalent to a pop-
ulation genetics model of the evolution of clonal populations under mutation
and selection. This allows us to put our findings in context with a number of
analytical results from population genetics.

2 The Model

A model of the immune response incorporating SHM and selection, in which
lymphoid tissue is represented by a 25 × 25 square grid with periodic bound-
ary conditions, was implemented in language C. In it B cells are assumed to be
distributed evenly in the small squares of the grid and are modeled as a large
population with many subpopulations of equal size named demes. More specif-
ically, each single square holds a deme of Nd B cells (thus the whole system
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contains Nt = Nd × 625 B cells). Individual B cells are defined by strings repre-
senting V-regions with 300 nucleotides in size. The processes of SHM/selection
take place only in particular demes named MS demes. Cells can migrate from
one deme to any of the 8 neighbour demes with probability mr (see arrows in
figure 1).

In each time step (generation) B cells within MS demes mutate in the V region
of their Igs with rate U per B cell per generation. The number of mutations
occurring per cell is a Poisson random variable with mean U . Once a mutation
occurs it can either decrease (with probability pd) or increase (with probability
1 − pd) the affinity of targeted Abs.

Outside of the MS demes, mutation does not occur and all cells have the same
probability of survival. In the MS demes the probability of survival for each cell
is directly proportional to its fitness Wij , which depends on the affinity of its
Igs for the Ag. Wij corresponds to the probability of survival of a B cell with
i mutations that decrease the affinity and j mutations that increase affinity. To
calculate the fitness of each B cell, we use the multiplicative fitness assumption
for the interaction between mutations. With this assumption the fitness of B
cells containing i low affinity and j high affinity mutations is calculated as:
Wij = (1 + sb)j(1 − sd)i, where sb is the effect of mutations that lead to an
increase in affinity and sd is the effect of mutations that lead to a decrease in
affinity.

To understand how different degrees of ‘GC’ aggregation/organization could
affect the process of affinity maturation and the resulting diversity, five topolo-
gies were considered. These topologies are used to model different sizes of ‘GC’
represented by different areas where SHM and selection could take place. These
were meant to model the evolution of GC size along a phylogenetic scale, going
from vertebrates species where the SHM and affinity maturation did occur in less
structured lymphoid tissue, to current higher vertebrates where these processes
take place in finely organized GC structures. We have considered the following
topologies (in figure 1 an example of the grid corresponding to topology A3 is
shown): (i) topology A1 consists of 64 single, unconnected MS demes; (ii) topol-
ogy A2 consists of 16 groups of 2 × 2 MS demes; (iii) topology A3 consists of
7 groups of 3 × 3 MS demes; (iv) topology A4 consists of 4 groups of 4 × 4 MS
demes; and (v) topology A5 consists of 1 group of 8 × 8 MS demes.

Each group of MS demes is placed at random in the grid. The simulations were
performed using the following set of parameter values. Each deme is assumed
to hold Nd = 100 B cells (this number is adjusted every generation, after the
migration process has occurred). Within MS demes the mutation parameters are
U = 0.3 and pd = 0.998, and the selection parameters, sd and sb, were varied.
The migration rate was set to mr = 0.00625. This Monte-Carlo algorithm was
run for different periods of time. In particular, analyses of the time for the mean
affinity to approach the expected equilibrium were performed. To relate the
time steps in the algorithm with the time scale of present day GCRs, we assume
that B cells in the MS demes divide every 8 hours [3]. Thus 60 time steps in
the algorithm correspond to about 21 days, which is the average life of GCs
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Fig. 1. An example of the 25 × 25 grid with a possible A3 topology. The full squares
(MS demes) indicate the places where mutation and selection occur. Arrows indicate
the eight possible directions for a migration event.

in primary immune responses. In order to obtain a variance due to stochastic
events each simulation was repeated 20 times.

3 Results

3.1 Some Results from Genetics Population Theory

We first summarize some analytical results from population genetics that are
relevant to understand the results shown for this model of GC evolution. Let
us consider a large population of individuals (e.g., B cells) undergoing mutation
at rate Ud per individual per generation. Lets assume that every mutation has
a negative effect, decreasing the fitness (∝ affinity) by an amount sd. Then,
after approximately 1/sd generations (each constituting a cycle of mutation and
selection), the distribution of bad mutations in the population is Poisson with
mean Ud/sd. This means two things: first, if sd is small it takes a lot of time to
achieve this distribution; second, when it is achieved it can have a very large mean
and variance. In the simulations sd was around 10% the initial fitness so that
the equilibrium distribution was reached in a period shorter than the time of a
typical GC reaction of a primary immune response. Let a(t) be the mean number
of negative mutations at time t after the start of the SHM process, then the
distribution at time t is Poisson with mean given by: a(t) =

(
1− (1−sd)t

)
Ud/sd

[6]. Population genetics theory also shows that, if the population is not very
large and/or sd is small, the equilibrium above is not stable and a continuous
accumulation of deleterious mutations can occur [7]. This is likely to happen if
the condition N × Exp(−Ud/sd) is satisfied, where N is population size.

If positive (affinity increasing) mutations are allowed to occur at rate Ua per
cell per generation then for Ua � Ud the distribution of negative mutations
(decreasing affinity or deleterious) stays close to a Poisson [8].
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3.2 Average Affinity Increases with Aggregation Until a Plateau
Is Reached

We were interested in how ‘affinity’ (fitness) levels vary with the level of ag-
gregation, that is, how ‘affinity’ levels vary with the size of the structure where
the GCR occurs. Figure 2 shows the results for different values of the effect of
mutations that increase and decrease affinity and for different times of the GCR.
When considering short periods for the GCR, the average level of ‘affinity’ is low,
even lower than the germ-line level of ‘affinity’, which by definition is 1. But as
we consider longer periods, we observe that the level of affinity increases as the
size of the structures increase. In particular, given sufficient time, above a given
size of the structures, the level of affinity reaches a plateau. This qualitative
result is independent of the exact values of the selection parameters sd and sb.
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Fig. 2. Level of Ab affinity for increasing levels of aggregation at different times of the
GC reaction

The reasons for this behaviour are as follows.When the size of the (GC) structure
is small, the number of cells within each structure that are undergoing mutation
and selection is small, so the contribution of the stochastic effects to the process
is large. This means that, in order for a key mutation to overcome the effects of
drift, the increase in affinity of that mutation has to be extremely high. Otherwise,
most likely the mutant will be lost by chance. Thus, unless sb is very strong, for low
values of the aggregation the level of affinity is low. When the size of the aggregate
is large the stochastic effects are small, and so the probability that the key mutation
spreads is higher. From population genetics theory of simple models of mutation
and selection we know that the effects of selection are more important than the
effects of drift when sb > 1/Ne, where Ne is the effective population size [9]. In our
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model, since both beneficial and deleterious mutations can occur, the value of Ne

depends on the mutation rate and on sd [8][10].
The above result suggests that there is a critical GC size that leads to a maximal

level of affinity. GCs of sizes above this value do not lead to further improvements
in affinity. We can also see that organisms in which the process of SHM/selection
is spread out in tiny structures may not achieve high levels of affinity maturation.
This is compatible with what is observed in lower vertebrates.

3.3 Changes in Average Diversity with Aggregation

Next we have studied how the GC size influences the level of diversity for the
whole set of reactions. The diversity of the surviving cells is measured by counting
the number of pair-wise differences in the Ig V sequences between two random
clones sampled from the GC population.

Figure 3 shows the results for different values of the mutation effects sd and
sb and for different times of the GC reaction. Obviously, for short reaction times
the diversity level is low, but as time increases this level approaches equilibrium.
This depends on the values of the parameters governing mutation and selection,
as discussed in the previous section.
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Fig. 3. Level of Ab diversity at different times of the GC reaction for increasing aggre-
gation level

Initially the diversity generated is mainly due to deleterious mutations, but as
time proceeds key mutations start to increase in frequency and they out-compete
lower affinity clones. This may lead to an actual reduction in diversity. As larger
aggregates lead to a higher probability of fixing key mutations the decrease
in diversity is more pronounced for the larger aggregates. The wiping out of
diversity in clonal populations is a well-established phenomenon in population
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genetics [11]. From this result we conclude that there is an intermediate value
of the GC size for which the level of diversity generated is maximum.

Taken together, the above two results indicate that only GCs of some inter-
mediate size lead to high levels of both affinity and diversity.

4 Discussion

The present preliminary results show that for lower values of aggregation, diver-
sity and affinity maturation act together as a positive selection force for further
aggregation increase. However, beyond a certain degree of aggregation there is a
trade-off between diversity and affinity maturation. This leads to an optimal size
of GCs, for which both high affinity Abs and a highly diverse pool of slightly dif-
ferent ones is produced. An important point that deserves mentioning is that the
present results depend quantitatively on the particular definition of the fitness
Wij . However, we expect the qualitative behaviour will be much less affected
by the fitness definition. On the other hand, the present multiplicative fitness
definition of Wij is the most commonly used because of two major reasons: its
simplicity and the fact that, as far as we know, to date there is no data rele-
vant to establish a ‘fitness landscape’ linked to mutations affecting a particular
phenotype, and in particular to those affecting the affinity of antibodies.

The classical view of GCs assumes that their major role is to generate high
affinity levels of serum Abs, as well as a dominant pool of high affinity memory B
cells, through a very efficient selection process [1]. However, in addition to affin-
ity maturation, the diversity generated during the GCR may be also important.
Two kind of experimental observations support this view. First, although all ver-
tebrates display similar diversity generation by SHM during immune responses
to protein Ags, lower vertebrates have significantly lower efficiency in selecting
high affinity Ab mutants than higher vertebrates. However, lower and higher
vertebrates have similar life spans. Second, mutant mice with impaired SHM
get sick because of strong intestinal inflammation due to massive infiltration of
normal anaerobic gut flora [5].

The preliminary results that we have presented here suggest an alternative view
of the role of SHM in immune responses. According to it in present day higher ver-
tebrates, the GC reaction not only facilitates the selection of high affinity mutant B
cells, but also allows for a rapid generation of (refined) diversity with the potential
to recognize changes in the originally immunizing Ag (for instance, virus that mu-
tate with high rate). In other words, the selection process may be only moderately
efficient, and in some sense imperfect at leading to the creation of the best (high-
est affinity) possible memory B cell pool, but may have evolved just so to allow
incorporation into the memory pool enough Ig diversity around the specificity of
the initial triggered Igs. In this way different individuals can have a good coverage
of the different mutational variants of a pathogen generated during its replication.
That is, there would be an increased fitness for those individuals able to deal with
pathogen variants, while conserving a large enough amount of Abs with increased
affinity to the initial pathogen strain. We further speculate that the SHM mecha-
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nism could have co-evolved with mutational mechanisms in virus and bacteria fo-
cusing in each case in recognition molecules (e.g., Ig V regions in the first case and
invasiveness molecules, like influenza hemaglutinin, in the second case), leading af-
ter a race similar high mutation rates and similar diversity generation compatible
with the physiology of those molecules.

Many related important questions remain to be explored. What determines
the SHM rate? Is it optimal? What determines the time of duration of the GCR?
Under the view suggested above this time would be related not only to the mu-
tation rate, but also to the diversity generated. For a given mutation rate, the
diversity generated and the probability to spoil the physiologyof the Abs will
increase with the duration of the GC reaction. Thus, the mutation rate and the
duration of the mutational process will be the maximum compatible with pre-
serving the role of the Abs, while the mutational mechanism of microorganisms
must be limited also in their rates and the length of the period time in which it
is active, being at rest in non-stressing environments.
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Abstract. This paper presents the computer aided simulation of a model
for the control of an immune response. This model has been developed to
investigate the proposed hypothesis that the same cytokine that amplifies
an initiated response can eventually lead to its downregulation, if it can
act on more than one cell type. The simulation environment is composed
of effector cells and regulatory cells; the former, when activated, initi-
ate an immune response, while the latter are responsible for controlling
the magnitude of the response. The signalling that coordinates this pro-
cess is modelled using stimulation and regulation cytokines. Simulation
results obtained, in accordance with the motivating idea, are presented
and discussed.

1 Introduction

The immune system is a complex aggregate of cells, antibodies and signalling
molecules. The Clonal Selection Theory [1] has been, for nearly 5 decades, the
dominating base to explain how the immune system discriminates between self
and nonself. This discrimination is extremely important, because the system
must be able to eliminate nonself components that infiltrate the body, while
remaining unresponsive to self. The Clonal Selection Theory argues that the
system’s tolerance to self is accomplished through a process denominated neg-
ative selection, when self-reactive B and T lymphocytes are eliminated during
their development.

However, there’s increasing evidence that some self-reactive cells eventually
escape from the clonal deletion [2]. Therefore, these lymphocytes are present
in the periphery, and could give rise to hazardous autoimmune diseases. Vari-
ous models have been proposed to explain why, most of the times, these cells
remain inactive, ignoring self antigens. These models are based on passive or re-
cessive mechanisms, such as low avidities of their receptors for self-antigens and
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lack of costimulation from antigen presenting cells (APCs). There is, however, a
dominant mechanism [3], based on active downregulation of the activation and
expansion of self-reactive lymphocytes by certain T cells [4], named regulatory
T cells.

In addition, as discussed in [5], there’s not much information regarding the
mechanisms that terminate immune responses. After a response to an antigen,
the immune system is returned to a state of rest, just like before the initiation
of the response. This process, called homeostasis, allows the immune system
to respond to new antigenic challenges (because the lymphocyte repertoire is
closely regulated), and is also conducted by regulatory T cells.

To understand how the control of an initiated immune response is important,
it is interesting to notice that, according to [6], the tissue damage that follows
the chronic inflamation of tuberculosis is caused not by the bacillus, but by an
uncontrolled response to it. In this sense, this work presents a model for the
control of an initiated immune response, based on regulatory cells and cytokine
secretion and absorption. The model has been motivated by the hypothesis that
the same cytokine that improves an initiated response can lead to its termination,
if this cytokine acts on more than one cell type with different affinities.

This paper is presented in the following way: first a short description of the
cytokines included in the proposed model is presented. Afterwards, regulatory
T cells are discussed, focusing on their interesting features for the simulation,
followed by a detailed description of the proposed model and its parameters. In
the end, results obtained by a simulation are presented and discussed.

2 Cytokines

Cytokines are control proteins secreted by the cells of the immune system, in
response to microbes, other antigens or even other cytokines. For greater details
regarding cytokines, the reader is invited to read [7] and [8].

Most cytokines are pleiotropic (capable of acting on different cell types), and
influence the synthesis and actions of other cytokines. Besides, their secretion is
a brief, self-limited event, and they may have local and systemic actions. They
usually act close to where they are produced, either on the same cell that se-
cretes them (autocrine action) or on a nearby cell (paracrine action), and initiate
their actions by binding to specific receptors located on the membrane of the
target cells. The expression of these receptors (and, thus, the responsiveness to
cytokines) is controlled by external cell signals (in B and T cells, the stimulation
of antigen receptors). In the proposed model, there are two cytokines of interest,
described below:

Interferon-γ (IFN-γ) : IFN-γ is the cytokine that allows T lymphocytes and
natural killer (NK) cells to activate macrophages to kill phagocytosed patho-
gens. Besides, IFN-γ improves the ability of antigen presenting cells (APCs)
to present antigens, by increasing the expression of MHC and costimulation
molecules. Therefore, it can be seen as an stimulation cytokine, that acts in
order to increase the magnitude of a response;
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Interleukin-10 (IL-10) : IL-10 acts inhibiting the activation of macrophages,
being involved in the homeostatic control of innate host immune responses.
It prevents the production of IL-12 and TNF by activated macrophages. Be-
cause IL-12 is a critical stimulus for IFN-γ secretion and induces innate and
cell-mediated immune reactions against intracellular pathogens, IL-10 is re-
sponsible for downregulating these reactions. Therefore, it can be thought of
as a regulatory cytokine, decreasing the magnitude of an established immune
response.

3 Regulatory T Cells

The maintenance of immunologic tolerance by natural CD25+ CD4+ T cells was
presented in [9], where autoimmune diseases were induced in normal rodents by
removal of a specific subpopulation of CD4+ cells. Recently, it was found that
these cells, responsible for the maintenance of self-tolerance, can be identified by
the expression of the Foxp3 marker [10]. These cells are capable of exerting sup-
pression upon stimulation via the T cell receptor (TCR), and their engagement
in the control of self-reactive cells is related to the recognition of self-antigens in
the normal environment. Besides, once stimulated, the suppression mediated by
CD25+ CD4+ regulatory T cells mediate is antigen non-specific. Therefore, they
are capable of suppressing the proliferation of T cells specific for the antigen
that lead to their activation, but also other T cells specific for other antigens, a
mechanism known as bystander suppression [11].

In this sense, the defining feature of CD25+ CD4+ Treg cells is the ability to
inhibit the proliferation of other T cell populations in vitro. This suppression
requires the activation of the regulatory cell through its TCR, doesn’t involve
killing the responder cell and is mediated through a mechanism based on cell
contact or mediated by IL-10 and other cytokines [12] [13].

These cells play a crucial role not only in preventing self-reactive T cells that
have escaped negative deletion from initiating an immune response against self-
antigens. Induced regulatory cells are engaged in the control of a “legitimate”
response in the periphery, preventing local or systemic immunopathology (such
as septic shock), due to the excessive production of pro-inflamatory cytokines by
activated cells [14]. This is an interesting feature, with little exploration available
in the literature. An important work in this line is [15], where the role of Toll-like
receptors (TLRs) in the process of inflamation is discussed. In addition, these
cells are responsible for preventing the complete elimination of the invading
microbe, because its persistency, in low levels, is important for the continuous
stimulation of long-lived functionally quiescent memory cells [5].

The immune system can be studied in a context of infection, characterized
by a response to antigenic pathogens, or in healthy, normal individuals, when
the internal activities of the system are dominant. In both cases, regulatory T
cells play an important role. In the former, these cells are responsible for the
control of both the inflamatory activity and the intensity of the response. In the
latter, they prevent autoimmune diseases, given the existence of self-reactive B
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and T lymphocytes. A recent work presented in [16] discusses two hypotheses in
this context: the tuning of activation thresholds of self-reactive T lymphocytes,
making them reversibly “anergic”, and the control of the proliferation of these
cells by specific regulatory T cells.

4 Model Description

As previously discussed, this paper is aimed at modelling the control of an ini-
tiated immune response through cytokine signalling, involving effector and reg-
ulatory cells. The proposed model is based on microscopic mechanisms, and,
due to the lack of numerical data from in vivo or in vitro experiments, most
of the governing equations were arbitrarily selected. However, even if numerical
data were available, it is important to emphasize that a complete modelling the
immune system is not trivial, given its complexity [17] [18].

Before modelling the actual process of controlling the immune response, some
considerations were made about the environment. The tissue where the response
would occur is approximated by a rectangular region, whose dimensions are
given as parameters to the simulation. Also, the number of iterations and the
time step are additional necessary parameters. Cytokines are represented by
two-dimensional matrices, equivalent to a discrete representation of the environ-
ment. In this sense, there are two cytokine matrices, which separately store the
concentrations of the stimulation and regulatory cytokines. Each cell occupies a
single square in the grid, and, currently, remains fixed in this position. Besides,
the simulations performed so far don’t take cell clonning into consideration. Fi-
nally, all data presented in this paper is adimensional (i.e.: no physical units for
the concentrations or other variables are used), because this has no effects on
the simulation outcome. However, if the results are to be compared to real world
data, the introduction of physical units in the governing equations is necessary.

The simulation is started after an effector cell is stimulated, after, for example,
contact with a specific antigen. It is important to mention that this model doesn’t
consider antigen dynamics, once the response has been initiated. This cell will
secrete an amount of an stimulation cytokine that will be diffused through the
environment. The remaining cells (both effector and regulatory) will, then, ab-
sorb some of this cytokine, and be activated, secreting, in turn, more cytokines,
until a steady state is reached. Effector cells secrete the stimulation cytokine,
while regulatory cells secrete the regulatory cytokine; on the other hand, effec-
tor cells absorb both stimulation and regulatory cytokines, while regulatory cells
absorb only the stimulation cytokine. Based on the discussion presented in [5],
the expected response should be an increase of the number of activated effector
cells, with little influence from regulatory cells, until the response suppression is
initiated, with the activation of regulatory cells and eventual termination of the
response. These steps are represented graphically in figure 1.

Each cell stores its position in the tissue and a value representing its acti-
vation level. This activation level reflects the immunological status of the cell,
and is a real number in the interval (0, 1). The greater the activation level, the
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Fig. 1. Steps for the simulation of the proposed model

“more” activated and immunocompetent a given cell can be considered to be,
in contrast to a resting condition, represented by an activation level close to
zero. The affinity between a cell and a cytokine, a key point of the motivating
hypothesis, is modelled by constants used to update the cell activation level,
based on the cytokine absorption, that will be described in greater detail. This
cytokine affinity is proportional to the increase in the cell activation level, so
that cells with a large affinity will be highly stimulated upon absorption of a
given stimulation cytokine. This approach to the simulation is very similar to
the proposal of [18], where a cellular automaton is used to simulate the dynamics
of the immune system during immunization.

Due to the complexity involved, each distinct step in the simulation is pre-
sented separately, in the following sub-sections.

4.1 Cytokine Decay and Diffusion in the Environment

Updating the cytokine concentration in the environment is conducted in accor-
dance with the discrete two-dimensional diffusion equation [19], using equations
1 for diffusion and 2 for decay, where ψ(x, y, t) is the cytokine concentration at
the point defined by the coordinates (x, y) at the time instant t, kd is the cytokine
diffusion rate, Δt is the simulation time step, ζ is the decay constant, n(x, y) is
the number of valid slots surrounding the position defined by points (x, y) (rep-
resenting the tissue boundary conditions) and hx and hy are the environment
dimensions. The artificial tissue has been modelled as a compartment isolated
from the body, so that there’s no cytokine flux coming in or out of the simulation
environment. Therefore, all cytokines secreted by the cells in the tissue remain
confined to the environment, without taking the decay into consideration.

ψ(x, y, t + Δt) = ψ(x, y, t) +
kd · Δt

hx · hy
· (ψ(x − 1, y, t) +

ψ(x + 1, y, t) + ψ(x, y − 1, t) + ψ(x, y + 1, t)) − n(x, y) · ψ(x, y, t))
1 ≤ x ≤ hx, 1 ≤ y ≤ hy (1)

ψ(x, y, t + Δt) = ψ(x, y, t) · (1 − ζ), 0 ≤ ζ ≤ 1 (2)
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4.2 Cytokine Absorption

Following the cytokine diffusion and decay in the tissue, each cell in the popu-
lation proceeds to absorb cytokines located in the position where it is located.
According to the model being simulated, effector cells can absorb both IFN-γ
and IL-10, while regulatory cells can only absorb IFN-γ. For simplicity, this pro-
cess has been modelled by a first degree polynomial of the cell activation level,
according to equation 3. This equation determines the absorption rate, that is,
the relative amount of a given cytokine to be absorbed, where φin

max is the max-
imum cytokine input rate, to be absorbed when the cell is fully activated, φin

min

is the minimum cytokine input rate, absorbed when the cell has received little
or no stimulation and α is the cell activation level. As mentioned, the value
given by equation 3 is relative to the total cytokine concentration located in the
position where the cell is located. Therefore, to determine the absolute amount
of cytokine to be absorbed, the total cytokine concentration is determined, and
multiplied by φ(α)in, as shown in equation 4. To illustrate the function used to
determine the absorption rate, it is shown in figure 2, for two different values of
φin

min and φin
max.

φ(α)in = φin
min + (φin

max − φin
min) · α (3)

Δψ(x, y, t, α)in = φ(α)in · ψ(x, y, t) (4)

Fig. 2. Plots of the cytokine absorption rate as a function of cell activation for ψin
min =

0.1, ψin
max = 0.5 and ψin

min = 0.3, ψin
max = 0.5

4.3 Determination of the New Activation Level

After cytokine absorption, the simulation continues to determine the new activa-
tion level for each cell, given as a function of the cytokine inputs. As previously
discussed, effector cells have ψin

stimulation ≥ 0 and ψin
regulation ≥ 0 (because they

can absorb both IFN-γ and IL-10), and regulatory cells have ψin
stimulation ≥ 0

and ψin
regulation = 0 (because regulatory cells can absorb only IFN-γ). In the
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motivating hypothesis, the different affinities for the stimulation and the reg-
ulatory cytokine for the effector cells plays an important role in this model.
Therefore, the constants involved in this step have great influence on the model,
because the cell activation level is used as a measure of the response magnitude.
Given the cytokine inputs, the resultant input is then determined, according
to 5, where kr and ks are positive values, named regulation and stimulation
constants, respectively.

χ = ks · ψin
stimulation − kr · ψin

regulation (5)

Effector Cells. Closer inspection of equation 5 reveals that the resultant input,
when negative, implies that cell regulation exert domination over cell stimula-
tion, and the cell activation level should be decreased. On the other hand, a
positive resultant input should increase the activation level. To model the acti-
vation level update process, the sigmoid function is used. The new cell activation
level, given as a function of the resultant input and current activation level, is
given by equation 6, where α0 is the current activation level, χ is the resultant
input and σ is the sigmoid function steepness. To illustrate the activation func-
tion, it is shown in figure 3, as a function of the resultant input (χ), for two
values of α0 and σ (α0 = 0.2, σ = 0.1 and α0 = 0.8, σ = 0.2).

α(χ, α0) =
1

1 + 1−α0
α0

· exp(−σ · χ)
(6)

Fig. 3. Plots of the new cell activation level as a function of resultant input for α0 =
0.2, σ = 0.1 and α0 = 0.8, σ = 0.2

The activation function shown in figure 3 has two interesting characteristics:

– the current activation level (α0 in equation 6) is related to the horizontal
translation of the activation curve. As a matter of fact, the curve is trans-
lated so that α(χ = 0, α0) = α0; thus, in the absense of input stimuli, the cell



16 T. Guzella et al.

activation level will remain constant. In this sense, each cell can be seen as
a processing unit with an activation level controlled by a given externally
received input

– the steepness (σ in equation 6) is inversely proportional to the transition
region between 0 and 1 in figure 3. As an example, consider the first curve
(α0 = 0.2, σ = 0.1), where a resultant input equals to approximately 5.4 units
is needed to increase the activation level by 0.1, while, for the second curve,
this value is around 4.1 units. Therefore, the steepness, together with the
stimulation and regulation constants, can be seen a parameter representing
the affinity for the absorbed cytokines.

Regulatory Cells. Due to the fact that, in this proposal, regulatory cells react
only to IFN-γ, the resultant input (χ, according to equation 5) is either positive
or zero. Therefore, using equation 6 is not appropriate, because the activation
level would never decrease. Thus, update of the activation level for regulatory
cells is governed by equation 7.

α(χ) =
2

1 + exp(−σ · χ)
− 1 (7)

According to equation 7, the new activation level for regulatory cells is not
dependant on the current activation level (α0), in contrast to equation 6. In this
sense, regulatory cells have no memory of past states (in this case, the activation
level), and act based only on the current environment conditions.

4.4 Cytokine Secretion

In this step, each cell secretes an amount of a given cytokine. As previously
discussed, effector cells secrete IFN-γ (referred to as a stimulation cytokine),
while regulatory cells secrete IL-10 (referred to as a regulatory cytokine). The
amount of cytokine to be secreted is directly proportionally to the cell’s acti-
vation level, and has been modelled according to equation 8, where Δψ is the

Fig. 4. Plots of the cytokine secretion as a function of cell activation for two sensitivity
values
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target cytokine secretion amount (which increases the cytokine concentration in
the position where the cell is located), ψout

max is the maximum secretion allowed
and α is the cell activation level. The secretion function is shown in figure 4, for
two maximum secretion values (ψout

max = 2 and ψout
max = 8).

Δψ(α)out = ψout
max · α (8)

This equation has been chosen for both simplicity and ease of calculation, so
that the simulation of the model is not limited by an excessive computational
load. As previously mentioned, no assertion about the validity of this modelling
can be performed for now, due to the absence of numerical experimental data.

5 Results and Discussion

In order to verify the response of the designed model, a simple simulation scenario
was selected. The artificial tissue is represented by a 3x3 square region, with the
cell positioning shown in figure 5, where E and R are used to designate the
cell type (effector and regulatory, respectively), and the number located right
under the cell type designates the cell number, to be used when analysing the
simulation results, with the x and y axis in the horizontal and vertical directions,
respectively.

Fig. 5. Artificial tissue where the simulation took place

The cell populations for the simulation are composed of, according to figure
5, 6 effector cells and 1 regulatory cell. Therefore, the initial cell population is
composed of 14.3% of regulatory cells, a number close to values verified experi-
mentally [9].

Before starting the simulation, the cell identified by number 2 in figure 5 was
stimulated, by setting its activation level to 0.999. This could be caused by the
recognition of an antigen, for example. The remaining cells were initialized with
an activation level equals to 1 · 10−4. Afterwards, the simulation was executed
for 30 iterations, with a time step of 1 second. The diffusion rates of stimulation
and regulatory cytokines were chosen as 1.5 and 2, respectively, while decay rates
were chosen as 0.25 and 0.05, respectively. Therefore, regulatory cytokines diffuse
more easily and decay less into the environment than stimulation cytokines.
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Table 1. Simulation parameters

Parameter Value
Effector cells Regulatory Cells

Max. cytokine secretion (ψout
max) 2 45.5

Min. stimulation cytokine absorption (φin
min) 0.4 0.05

Max. stimulation cytokine absorption (φin
max) 0.8 0.5

Min. regulation cytokine absorption (φin
min) 0.3 -

Max. regulation cytokine absorption (φin
max) 0.5 -

Stimulation constant (ks) 10 3
Regulation constant (kr) 10 -
Activation steepness (σ) 1 2

Additional parameters for both effector and regulatory cells, chosen empirically,
are shown in table 1.

As previously discussed, a key feature of the hypothesis motivating the devel-
opment of the proposed model is the ability of the stimulation cytokine to be ab-
sorbed with different affinities by effector and regulatory cells. In order to obtain
the expected system dynamic response (increasing the magnitude of the response,
followed by its decline), it is analysed the case when the effector cell affinity for
the stimulation cytokine is greater than the affinity by regulatory cells. In this sit-
uation, the regulatory cell would only be activated once a large amount of stimu-
lation cytokine (secreted by activated effector cells) is present in the environment.

The model parameters shown in table 1 were chosen to reflect this assumption.
Special care was taken not to select large diffusion rates, leading to instability
when determining the cytokine diffusion. The activation steepness for effector
cells is twice as low as for regulatory cells, while the stimulation constant for
effector cells is greater than for regulatory cells. Afterwards, the selected pa-
rameters were tuned to lead to a desired characteristic, where the response is
initiated (by the initially stimulated cell), increased (by the recruitment of sur-
rounding effector cells) and terminated (by suppression of the activated cells). It
is important to mention that some combinations of values have lead to oscilla-
tions in the response (data not shown), with the activation level of effector and
regulatory cells increasing and decreasing, without reaching a steady state. This
oscillatory response of the model is undesirable, because there are no reports
from a similar behavior in the natural immune system.

The simulation results obtained for the selected parameters are presented in
figures 6, 7, 8 and 9. By the end of the simulation, the effector cells identified
by numbers 4, 5 and 6, according to figure 5, were not activated, remaining in a
resting state during the simulation. Thus, simulation results for these cells are
not presented. On the other hand, the effector cells identified by the numbers 1
and 3 in figure 5 were successfully recruited for the immune response initiated
by effector cell number 2. Some iterations after the beginning of the simulation,
the regulatory cell (number 7) began to be stimulated, acting, at some time, to
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Fig. 6. Cell activation levels during the simulation

Fig. 7. Cytokine secretion for the initially stimulated effector cell 2

end the initiated response. Figure 6 shows the activation level for effector cells
1, 2 and 3, and regulatory cell 7, during the simulation procedure, while figures
7, 8 and 9 show the cytokine absorption and secretion for these cells.

The results indicate that the model, with the parameters presented in table
1, is able to exhibit the expected response characteristic, with the recruitment of
cells and, after some time, termination of the response. Figure 6 shows that cell
number 2 (initially stimulated) remains highly active (with an activation level
close to 1) for 12 iterations, and quickly decays, reaching a resting condition by
iteration 15. In the same figure, it can be seen that effector cells 1 and 3 have
reached a peak activation level equals to 0.57 at iteration 14, quickly declining
and reaching a low activation level by iteration 16. The regulatory cell (number
7) has reached a peak activation level equals to 0.18 at the same time than
effector cells 1 and 3 have. One interesting characteristic of the response shown
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Fig. 8. Cytokine secretion for effector cells 1 and 3

Fig. 9. Regulatory cell cytokine secretion and absorption

in figure 6 is that the initially stimulated effector cell is suppressed before cells
1 and 3, reaching, an activation level of 0.04 at iteration 14, exactly when cells
1 and 3 have reached peak values. This activation delay is due to the time taken
by the secreted cytokines to diffuse in the environment and reach nearby cells.

In addition, the cytokine activation and secretion data (figures 7, 8 and 9)
reveal interesting information. Cytokine secretion by the regulatory cell reaches
a peak value equals to 8, at iteration 13, while cytokine absorption is maintained
at low levels, never exceeding 0.2. Therefore, it is possible to conclude that regu-
latory cells, in this model, need a low absorption rate to terminate the response,
resulting in little environment disturbance when not suppressing effector cells.
Because the governing equation for cytokine secretion was chosen as directly
proportional to the activation level 8, both variables have the same waveforms;
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this can be notice when comparing figures 6 to 7, 8 and 9. Inspection of figure 7
reveals that the regulatory cytokine absorption is nearly zero for the first 3 iter-
ations, intersecting the absorption cytokine absorption curve around iteration 6.

6 Conclusion

In this paper, a model for the control of an immune response, based on regula-
tory cells and cytokines, was presented. Althought based on relatively simple and
arbitrary functions, the model simulation has lead to interesting results, with an
expected response characteristic obtained. Therefore, this model can be consid-
ered as an initial validation to the hypothesis that has lead to its development,
that the same cytokine that stimulates the immune system, upon initiation of
an immune response, can eventually lead to the downregulation of this response,
if the secreted cytokine affects more than one cell type, with different affinities.

However, there are some points that need further investigation, such as a
mathematical explanation for the oscillatory response obtained for some model
parameters, and the influence of antigen dynamics and persistence in the system.
In addition, the model should take cell clonning and movement into consider-
ation, two aspects not considered in the simple simulation presented. In this
sense, this paper can be thought of as only an starting point for the simulation
of more complicated and accurate scenarios.
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Abstract. Predicting the virulence of new Influenza strains is an impor-
tant problem. The solution to this problem will likely require a combina-
tion of in vitro and in silico tools that are used iteratively. We describe
the agent-based modeling component of this program and report prelim-
inary results from both the in vitro and in silico experiments.

1 Introduction

Influenza, in humans, is caused by a virus that attacks mainly the upper respi-
ratory tract, the nose, throat and bronchi and rarely also the lungs. According
to the World Health Organization (WHO), the annual influenza epidemics affect
from 5% to 15% of the population and are thought to result in 3-5 million cases
of severe illness and 250,000 to 500,000 deaths every year around the world [1].
The rapid spread of H5N1 avian influenza among wild and domestic fowl and
isolated fatal human cases of H5N1 in Eurasia since 1997, has re-awakened inter-
est in the pathogenesis and transmission of influenza A infections [2]. The most
feared strain would mimic the 1918 strain which combined high transmissibil-
ity with high mortality [3,4]. Virulence of influenza viruses is highly variable,
defined by lethality and person-to-person transmission, but the causes of this
variability are incompletely understood. The early events of influenza replica-
tion in airway tissue, particularly the type and location of early infected cells,
likely determine the outcome of the infection. Rate of airway tissue spread is
controlled by efficiency of viral entry and exit from cells, variable intracellular
interferon activation modulated by the viral NS-1 protein, and by an array of ex-
tracellular innate defenses. Although molecular biology has provided a detailed
understanding of the replication cycle in immortalized cells, influenza replica-
tion in intact tissue among phenotypically diverse epithelial cells of the human
respiratory tract remains poorly understood. We are missing a quantitative ac-
counting of kinetics in the human airway and an explanation for how one strain,
but not a closely related strain, can initiate person-to-person transmission.

Although the viral structure and composition of influenza are known, and even
some dynamical data regarding the viral and antibody titers over the course of
the infection [5,6,7], key information such as the shape and magnitude of the
viral burst, the length of the viral replication cycle (time between entry of the
� Corresponding author.
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first virus and release of the first produced virus), and the proportion of produc-
tively infectious virions, is either uncorroborated, unknown, or known with poor
precision. This makes modeling influenza from data available in the literature
a near impossibility, and it points to the need for generating experimental data
aimed directly at the needs of both computational and mathematical models.

This paper describes the computer modeling side of a project that is integrat-
ing in vitro experiments with computer modeling to address this problem. We are
focusing on the early dynamics of influenza infection in a human airway epithe-
lial cell monolayer using both in vitro and computer models. The in vitro model
uses primary human differentiated lung epithelial cells grown in an air-liquid
interface (ALI) culture to document the kinetics of influenza spread in tissue.
The computer model consists of an agent-based model (ABM) implementation
of the in vitro system. Its architecture is modular so that more details can be
added whenever data from the in vitro system justifies it. Here, we will describe
the implementation of the computer model and report some initial simulation
results.

To our knowledge, only four mathematical models for influenza dynamics have
ever been proposed. The first and oldest one is from 1976 and consists of a very
basic compartmental model for influenza in experimentally infected mice [8]. Af-
ter a gap of 18 years, Bocharov et al. proposed an exhaustive ordinary differential
equation model based on the basic viral infection model but extended to include
12 different cell populations described by 60 parameters [9]. More recently, one of
us co-authored a paper presenting another ordinary differential equation model
with very slight modifications from the basic viral infection model [10] and a
second paper presenting a simple ABM for influenza [11]. All of these models
either perform poorly when compared to experimental data or are too simplistic
to capture the dynamics of interest in influenza.

2 Agent-Based Modeling

The spatial distribution of agents is an important and often neglected aspect of
influenza dynamics. We capture spatial dynamics through the use of an agent-
based model (also known as an individual-based) cellular automata style model.
Each epithelial cell in the monolayer is represented explicitly, and a computer
program encodes the cell’s behavior and rules for interacting with other cells and
its environment. The cells live on a hexagonal lattice and interact locally with
other cells and virions in their neighborhood following a set of predefined rules.
Thus, the behavior of the low-level entities is pre-specified, and the simulation
is run to observe high-level behaviors (e.g. to determine an epidemic threshold).
This style of modeling emphasizes local interactions, and those interactions in
turn give rise to the large-scale complex dynamics of interest.

This modeling approach can be more detailed than other approaches. The
programs can directly incorporate biological knowledge or hypotheses about
low-level components. Data from multiple experiments can be combined into
a single simulation, to test for consistency across experiments or to identify gaps
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in our knowledge. Through its functional specifications of cell behavior, our can
potentially bridge the current gap between intracellular descriptions and infec-
tion dynamics models. Similar approaches have been used to model a variety
of host-pathogen systems ranging from general immune system simulation plat-
forms [12,13,14,15,16] to models of specific diseases including tuberculosis [17,18],
Alzheimer’s disease [19], cancer [20,21,22,23,24,25], and HIV [26,27].

The spatially explicit agent-based approach is an appropriate method for this
project. The ALI is a complex biological system in which many different defenses
(e.g. mucus, cytokines) interact and biologically relevant values cannot always
be measured directly. In addition, recent high-profile publications have demon-
strated that entry of avian and human-adapted influenza viruses into different
airway epithelial cells depends on the cell receptor which in turn is dependent on
cell type and location in the airway [28,29]. Our modeling approach will facilitate
the exploration of spatially heterogeneous populations of cells.

3 Influenza Model

Our current model is extremely simple. We plan to gradually add more detail,
ensuring at each step that the additions are justified by our experimental data.
Here, we describe the model as it is currently implemented.

We are modeling influenza dynamics on an epithelial cell monolayer in vitro.
The monolayer is represented as a two-dimensional hexagonal lattice where each
site represents one epithelial cell. The spread of the infection is modeled by
including virions. Rather than treat each virion explicitly, the model instead
considers the concentration of virions by associating a continuous real-valued
variable with each lattice site, which stores the local concentration of virions
at that site. These local concentrations are then allowed to change, following a
discretized version of the diffusion equation with a production term. The rules
governing epithelial cell and virion concentration dynamics are described below.

3.1 Epithelial Cell Dynamics

The epithelial cells can be found in any of the four states shown in Fig. 1, namely
healthy, containing, secreting, and dead. For simplicity, we assume that there is
no cell division or differentiation over the course of the infection. The parameters
responsible for the transition between these states are as follows.

Infection of Epithelial Cells by Virions (k): Each site keeps track of the
number of virions local to the site, Vm,n. But while there are Vm,n virions at site
(m, n) at a given time step, depending on the length of a time step, not all of these
virions necessarily come in contact with the cell, and some may contact it more
than once. Alternatively, a particular strain of virions may not be as successful
at binding the cell’s receptors and being absorbed by the cell. To reflect this real-
ity, we introduce the parameter k which gives the probability per hour per virion
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Infected

DeadHealthy

Containing

τr

τd ± σdSecreting

k, Vm,n

Fig. 1. The agent-based model’s four states for epithelial cells, (Healthy, Containing,
Secreting, and Dead), and the parameters responsible for controlling the transitions
between these states

that a healthy cell will become infected (enter the containing stage). In other
words, k ×Vm,n gives the probability that the healthy cell located at site (m, n)
will become infected over the course of an hour. In order to fit experimental
data, we set the rate of infection of cells per virions in our model to k = 8 per
virion at that site per hour.

Duration of the Viral Replication Cycle (τr): This variable represents the
time that elapses between entry of the first successful virion and release of the
first virion produced by the infected cell. From the experiments, we found this
to be about 7 h, and hence we set τr = 7 h in the ABM.

Lifespan of Infectious Cells (τd ± σd): Once infected (containing), a cell
typically lives 24 h–36 h (from experimental observations). Given that the repli-
cation cycle lasts τr = 7 h, this means that once it starts secreting virions, an
infectious cell typically lives 17 h–29 h or about 23± 6 h. Thus, we set the lifes-
pan of each infected cell individually by picking it randomly from a Gaussian
distribution of mean τd = 23 h and standard deviation σd = 6 h. In our ABM,
cell death is taken to mean the time at which cells cease to produce virions.
Note that in vitro, a cell undergoing apoptosis will eventually detach from the
monolayer and will be replaced by a differentiating basal cell. For the moment,
we neglect these processes and reduce their impact by fitting our ABM to ex-
perimental results over no more than the first 25 h after virion deposition.

3.2 Virion Dynamics

As mentioned earlier, virions are not represented explicitly. Instead, we track the
concentration of virions stored as a real-valued continuous variable at each site
of the lattice. The diffusion of virions is then modeled using a finite difference
approximation to the diffusion equation. The continuous diffusion equation of
the concentration of virions, V , is described by

∂V

∂t
= DV ∇2V , (1)
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where V is the concentration of virions, ∇2 is the Laplacian, and DV is the
diffusion coefficient. The simulation is run on a hexagonal grid. The geometry
of the grid and the base vectors we chose are illustrated in Fig. 2.

(m, n)

(m,n − 1)

(m + 1, n − 1)

(m + 1, n)

(m,n + 1)

(m − 1, n + 1)

(m − 1, n)
�n

�m

√
3
4 Δx

1
2 Δx

Δx

Fig. 2. Geometry of agent-based model’s hexagonal grid. The honeycomb neighborhood
is identified in gray, and the base vectors m and n are shown and expressed as a function
of Δx, the grid spacing which is the mean diameter of an epithelial cell.

We can express (1) as a difference equation in the hexagonal coordinates
(m, n) as a function of the 6 honeycomb neighbors as

V t+1
m,n − V t

m,n

Δt
=

4DV

(Δx)2

[
−V t

m,n +
1
6

∑
nei

V t
nei

]
, (2)

such that V t+1
m,n at time t+1 as a function of V t

m,n and its 6 honeycomb neighbors
V t

nei at time t is given by

V t+1
m,n =

(
1 − 4DV Δt

(Δx)2

)
V t

m,n +
2DV Δt

3(Δx)2
∑
nei

V t
nei , (3)

where
∑

nei V
t
nei is the sum of the virion concentration at all 6 honeycomb neigh-

bors at time t.
Because we want to simulate the infection dynamics in an experimental well,

we want the diffusion to obey reflective boundary conditions along the edge
of the well. Namely, we want ∂V

∂j = 0 at a boundary where j is the direction
perpendicular to the boundary. It can be shown that for such a case, (3) becomes

V t+1
m,n =

(
1 − Nnei

2DV Δt

3(Δx)2

)
V t

m,n +
2DV Δt

3(Δx)2
∑
Nnei

V t
Nnei

, (4)
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where Nnei is the number of neighbors a cell really has. Note that for Nnei = 6,
(4) reduces to (3).

The virion-related parameters DV , Δx, Δt in (4), and the release rate of
virions, gV , have been set as follows.

Diffusion Rate of Virions (DV ): The diffusion rate or diffusion coefficient for
virions, DV , measures how fast virions spread: the larger DV , the faster virions
will spread to neighboring sites and then to the entire grid. One way to deter-
mine DV from experimental results is to take a measure of the “patchiness” of
the infection, i.e. the tendency of infected cells to be found in batches. The au-
tocorrelation function offers a good measure of patchiness. Hence, we calibrated
DV by visually matching our simulation to the experimental autocorrelation.
We started with DV = 3.18 × 10−12 m2/s which is the diffusion rate predicted
by the Stokes-Einstein relation for influenza virions diffusing in plasma at body
temperature. Ultimately, we found that DV = 3.18 × 10−15 m2/s, a value 1,000-
fold greater than the Stokes-Einstein diffusion, yielded the best agreement to the
experimental autocorrelation. This is illustrated in Fig. 3 where the experimental
autocorrelation is plotted against simulation results for different values of DV .
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Fig. 3. Autocorrelation at 24 h post-harvest for the experiments (full line, full cir-
cles) compared against the autocorrelation produced by the simulation when using
a diffusion coefficient of DV = 3.18 × 10−12 m2/s (dotted line, empty squares), and
DV = 3.18 × 10−15 m2/s (dashed line, empty triangles). All parameters are as in Ta-
ble 1 except for the DV = 3.18 × 10−12 m2/s simulation where k was set to 4 per
virions per hour to preserve the same fraction of cells infected at 24 h post-harvest.
The autocorrelation have been “normalized” to be one for a lag of zero.

Grid Spacing or Diameter of Epithelial Cells (Δx): The diameter of
epithelial cells was estimated from “en face” and cross-section pictures of the
experimental monolayer. The average epithelial cell diameter was found to be
about 11 ± 1 μm. We use Δx = 11 μm.
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Duration of a Time Step (Δt): The stability criterion for the finite difference
approximation to the diffusion equation presented in (4) requires that

Δt ≤ (Δx)2

4DV
, (5)

which is a more stringent requirement for larger values of DV or smaller values
of Δx. We use Δx = 11 μm which is the diameter of lung epithelial cells, and
DV = 3.18 × 10−15 m2 · s−1 such that in order to satisfy the stability criterion,
we need Δt ≤ 2.6 h. We found that setting Δt = 2 min satisfies the stability
criterion of the diffusion equation and accurately captures the behaviour of the
system.

Virion Release Rate (gV ): As seen above, τr = 7 h after becoming infected,
an epithelial cell will start secreting virions. In the model, secreting cells release
virions at a constant rate until the cell is considered “dead”, at which time
secretion is instantaneously stopped. This “shape” for the viral burst was chosen
arbitrarily as very little is known about the shape, duration, and magnitude of
the viral burst. We found that setting the release rate of virions by secreting
cells to gV = 0.05 virions per hour per secreting cell in our ABM yields a good
fit of the simulation to the experimental data.

3.3 Setting Up the Model

The infection of the epithelial cell monolayer with influenza virions in our in
vitro experiments proceeds as follows. An inoculum containing 50, 000 competent
virions (or 50, 000 plaque forming unit or pfu) is deposited evenly on the cell
monolayer. The solution is left there for one hour to permit the infection of the
cells and at time t = 0 h, the inoculum is harvested with a pipette. At that
time, not all the virions are removed: some are trapped in the mucus and get
left behind.

To avoid having to model the initial experimental manipulations and the
uncertainty in the viral removal, we start the ABM simulations at time t = 2 h
post-harvest. At that time, a fraction of cells have been infected by the inoculum
and a few virions have been left behind at harvest-time. To account for this fact,
we define two more parameters, V0 and C0, which give the number of virions
per cell and the fraction of cells in the containing stage at time t = 2 h post-
harvest, the initialization time of our simulations. In order to determine the
number of virions per cell, we also defined Ncells, the number of epithelial cells
in the experimental well. Parameters Ncells, V0 and C0 were set as follows.

Number of Epithelial Cells in the Experimental Well. (Ncells): We
computed Ncells, the number of epithelial cells in the experimental well using the
measured diameter of the epithelial cells, Δx = 11 μm, and the known area of the
experimental well, Awell = 113 mm2. Assuming that the sum of the surface area
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of all the epithelial cells fully fills the well’s area and that the surface area of
each cell is roughly circular, such that Acell = π(Δx/2)2, we can compute the
number of epithelial cells in the experimental well

Ncells =
Awell

π (Δx/2)2
(6)

=
113 mm2

π (11 μm/2)2
(7)

∼ 1, 200, 000 cells . (8)

For our ABM, we found that setting the well radius of Rwell = 160 cells, which
corresponds to about 93,000 simulated cells, is sufficient to accurately capture
the behaviour of a full scale simulation.

Initial Number of Virions per Epithelial Cell (V0): At time t = 2 h post-
harvest, the time at which we begin the simulation, 635±273 virions were found
on the monolayer. Hence, we can compute the number of virions per epithelial
cell present on the monolayer at time t = 2 h post-harvest,

V0 =
635 virions

Ncells
(9)

∼ 5.3 × 10−4 virions/cell , (10)

which corresponds to the number of virions per cell at initialization time.

Fraction of Cells Initially Infected (C0): The parameter C0 gives the frac-
tion of cells which are initially set to the containing state. Those are the cells that
were infected during incubation with the inoculum. Staining the ALI monolayer
with viral antigen at t = 8 h post-harvest revealed that approximately 1.8% of
the cells contained influenza protein, i.e. were producing virions. Hence, we set
C0 = 0.018 in the ABM such that 1.8% of cells are set to the containing stage
at initialization time.

4 Preliminary Results

In its current implementation, the ABM has 11 parameters shown in Table 1. A
screenshot of the simulation grid is presented in Fig. 4, and Fig. 5 presents the
dynamics of the various cell states and viral titer as a function of time against
preliminary experimental data. We can see that the ABM provides a reasonable
fit to the experimental data.
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Table 1. The 11 parameters used in the computer model, with a short description
of their role and their default value. In the Source column, C stands for computed,
M for measured experimentally, L for taken from the literature, and F for parameters
adjusted in order to fit the model to the experiments.

Symbol Description Value Source
Fixed Parameters

Rwell radius of simulation well in # cells 160 cells C (Sect. 3.3)
Δt duration of a time step 2 min/time step C (Sect. 3.2)
Δx grid spacing (diameter of epithelial cells) 11 μm M (Sect. 3.2)
τr duration of the viral replication cycle 7 h L (Sect. 3.2)

τd ± σd infectious cell lifespan (mean ± SD) 23 ± 6 h C (Sect. 3.1)
Adjusted Parameters

C0 fraction of cells initially infected 0.018 F (Sect. 3.3)
V0 initial dose of virions per cell 5.3 × 10−4 virions F (Sect. 3.3)
k infection rate of cells by virions 8 /h F (Sect. 3.1)
gV rate of viral production per cell 0.05 /h F (Sect. 3.2)
DV diffusion rate of virions 3.18 × 10−15 m2/s F (Sect. 3.2)

Fig. 4. Screenshot of the simulation taken at 18 h post-harvest for a simulated grid
(well) containing 5, 815 cells using the parameter values presented in Table 1. The
cells are color-coded according to their states as in Fig. 1 with healthy cells in white,
containing cells in green, secreting cells in red, and dead cells in black. The magenta
overlay represents the concentration of virions at each site with more opaque magenta
representing higher concentration of virions.
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Fig. 5. Simulation results using the parameter set presented in Table 1. The lines
represent the fraction of epithelial cells that are healthy (solid black), containing the
virus (dashed grey), secreting the virus (dashed black), or dead (dotted black), as well
as the number of competent virions (or pfu) on the right y-axis (dash-dot-dot black).
The diamonds and the circles represent experimental data for the viral titer and the
fraction of cells infected, respectively.
Note added in press: Recent experiments have revealed a highly variable dynamic range
of the replication rate, but the basic structure of the model remains intact.

5 Proposed Extensions

As mentioned earlier, the current model is extremely simple, and we plan to
gradually increase the level of detail.

One of the first improvements would be the inclusion of different cell types.
The epithelial cells that make up the simulation grid are assumed to be a homo-
geneous population of cells, with no distinction, for example, between ciliated
and Clara cells. We plan to add more cell types; each cell type would have the
same four states illustrated in Fig. 1, and the transitions between those states
would still be dictated by the same processes, but the value of the parameters
controlling these processes would differ from one cell type to another and from
one virus strain to another. With such a model, we could, for example, explore
differences in the spread of the infection on a sample constituted of 90% cilliated
cells and 10% Clara cells against the spread on a sample constituted of 50%
ciliated cells and 50% Clara cells.

We also plan to break existing parameters into sub-models. Let us illustrate
this process with an example. At the moment, we describe viral release using the
parameter gV which describes the constant rate at which virions are released by
secreting cells. In the future, this simple model of viral release could be replaced
by a much more elaborate intracellular sub-model of viral assembly and release
that takes account of factors such as viral strain and cell type to more accurately
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depict the dynamics. These sub-models could either be agent-based simulations
or ordinary differential equations when the spatial distribution of the agents
involved is not critical.

We also would like to refine the process of viral absorption, which is currently
described by the parameter k. It has recently been shown [28,29] that suscep-
tibility to a particular influenza strain is different depending on the cell type.
For example, human influenza virions preferentially bind to sialic acid (SA)-α-
2,6-Gal terminated saccharides found on the surface of ciliated epithelial cells of
the upper respiratory tract while avian influenza H5N1 prefers (SA)-α-2,3-Gal
found on goblet cells in and around the alveoli [28,29]. One easy way to take this
type of heterogeneity into consideration would be to define a virion absorption
rate rather than an infection rate, and consider different production rates, gV ,
for each strain of virus and for each cell type. Eventually, the parameter for
the absorption rate of virions, for example, could be broken into a sub-model
describing the molecular processes involved in virion absorption which would
explain in which way virus strains and cell receptors affect its value.

Eventually, when mechanisms such as viral absorption and release have been
modified to take on the form of molecular sub-models, the ABM will be calibrated
against a few different known influenza strains. This will provide pointers as
to which characteristics of an influenza viral strain drive these mechanisms.
Ultimately, we hope to be able to take a newly isolated influenza strain, infect
our in vitro system, and then fit our ABM to the experimental results. Doing
so would reveal the value of the parameters characterizing this particular strain
and hence reveal the lethality and infectivity of that strain.

6 Simulation Platform

The model is implemented on the MASyV (for Multi-Agent System Visualiza-
tion) simulation platform. MASyV facilitates the visualization of simulations
without the user being required to implement a graphical user interface (GUI).
The software uses a client-server architecture with the server providing I/O and
supervisory services to the client ABM simulation. The MASyV package con-
sists of a GUI server, masyv, a non-graphical command-line server for batch runs,
logmasyv, and a message passing library, ma message, containing functions to
be used by the client to communicate with the server. The simulation framework
is written in C and was developed on a Linux (Debian) system.

With the MASyV framework, a user can write a simple two-dimensional client
program in C, create the desired accompanying images for the agents with a paint
program of her/his choice (e.g. GIMP), and connect the model to the GUI us-
ing the functions provided in the message passing library. The flexible GUI of
MASyV, masyv, supports data logging and visualization services, and it supports
the recording of simulations to a wide range of video formats, maximizing porta-
bility and the ability to share simulation results collaborators. The GUI, masyv,
is built using GTK+ widgets and functions. For better graphics performance,
the display screen widget, which displays the client simulation, uses GtkGLExt’s
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OpenGL extension which provides an additional application programming in-
terface (API) enabling GTK+ widgets to rapidly render scenes rapidly using
OpenGL’s graphics acceleration capabilities. Capture of the simulation run to
a movie file requires the software Transcode [30] and the desired compression
codecs be installed on the user’s machine.

For non-graphical batch runs, a command-line interface, logmasyv, is also
implemented. This option is designed to run multiple simulation runs (e.g. for
parameter sweeps on large computer grids). This option requires only that a
C compiler be available, and it eliminates the substantial CPU overhead cost
incurred by the graphical services. Communication between the server program
(either masyv or logmasyv) and the client simulation is done through a Unix
domain socket stream.

MASyV is open source software distributed under the GNU General Public
License (GNU GPL) and is freely available for download from SourceForge [31].
It has a fixed web address, it is well maintained and documented, has an on-
line tutorial, and comes with a “Hello World” client simulation demonstrating
how to implement a new client and how to make use of the message passing
library. MASyV also comes with a few example pre-programmed clients such as
an ant colony laying and following pheromone trails (ma ants) and a localized
viral infection (ma immune) which was used in [11,32]. Our influenza model was
derived from ma immune and is now distributed with MASyV under the name
ma virions.

7 Conclusion

We have described the implementation of an agent-based simulation built to re-
produce the dynamics of the in vitro infection of a lung epithelial cell monolayer
with an influenza A virus. At this time, model development is still in its pre-
liminary stage, and many details remain to be elucidated. However, preliminary
runs with biologically realistic parameter values have yielded reasonable results
when compared with the currently available experimental data.

Recent results from the in vitro experiments revealed that large numbers
of virions were being trapped by the mucus. While at 1 h post-harvest viral
assays revealed that the experimental well contained about 4, 701± 180 virions,
it contains a mere 635±273 virions only 1 h later at 2 h post-harvest and 720±240
virions at 4 h post-harvest. These new results suggest that trapping of the virions
by the mucus and the absorption of virions by the epithelial cells upon infection
plays a crucial role in controlling the rate of spread of the viral infection. In
light of these new results, we plan to direct our future research towards better
characterizing the role of the mucus in viral trapping and its effect on viral
infectivity.

This recent development is an excellent example of just how much we still need
to learn about influenza infection. It also shows that our strategy of combining
in vitro and in silico tools will prove a useful tool in this quest.
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J.M., Basler, C.F.: Pathogenicity of influenza viruses with genes from the 1918 pan-
demic virus: Functional roles of alveolar macrophages and neutrophils in limiting
virus replication and mortality in mice. J Virol 79(23) (2005) 14933–14944

5. Belz, G.T., Wodarz, D., Diaz, G., Nowak, M.A., Doherty, P.C.: Compromized
influenza virus-specific CD8+-T-cell memory in CD4+-T-cell-deficient mice. J.
Virol. 76(23) (2002) 12388–12393

6. Fritz, R.S., Hayden, F.G., Calfee, D.P., Cass, L.M.R., Peng, A.W., Alvord, W.G.,
Strober, W., Straus, S.E.: Nasal cytokine and chemokine response in experimental
influenza A virus infection: Results of a placebo-controlled trial of intravenous
zanamivir treatment. J. Infect. Dis. 180 (1999) 586–593

7. Kilbourne, E.D.: Influenza. Plenum Medical Book Company, New York (1987)
8. Larson, E., Dominik, J., Rowberg, A., Higbee, G.: Influenza virus population

dynamics in the respiratory tract of experimentally infected mice. Infect. Immun.
13(2) (1976) 438–447

9. Bocharov, G.A., Romanyukha, A.A.: Mathematical model of antiviral immune
response III. Influenza A virus infection. J. Theor. Biol. 167(4) (1994) 323–360

10. Baccam, P., Beauchemin, C., Macken, C.A., Hayden, F.G., Perelson, A.S.: Kinetics
of influenza A virus infection in humans. J. Virol. 80(15) (2006)

11. Beauchemin, C., Samuel, J., Tuszynski, J.: A simple cellular automaton model for
influenza A viral infections. J. Theor. Biol. 232(2) (2005) 223–234 Draft available
on arXiv:q-bio.CB/0402012.

12. Celada, F., Seiden, P.E.: A computer model of cellular interactions in the immune
system. Immunol. Today 13(2) (February 1992) 56–62

13. Efroni, S., Harel, D., Cohen, I.R.: Toward rigorous comprehension of biological
complexity: Modeling, execution, and visualization of thymic T-cell maturation.
Genome Res. 13(11) (2003) 2485–2497

14. Meier-Schellersheim, M., Mack, G.: SIMMUNE, a tool for simulating and analyzing
immune system behavior. arXiv:cs.MA/9903017 (1999)

15. Polys, N.F., Bowman, D.A., North, C., Laubenbacher, R.C., Duca, K.: PathSim
visualizer: An Information-Rich Virtual Environment framework for systems bi-
ology. In Brutzman, D.P., Chittaro, L., Puk, R., eds.: Proceeding of the Ninth
International Conference on 3D Web Technology, Web3D 2004, Monterey, Califor-
nia, USA, 5–8 April 2004, ACM (2004) 7–14

16. Warrender, C.E.: CyCells. Computer Software distributed on SourceForge under
the GNU GPL at: http://sourceforge.net/projects/cycells. (2005)

17. Segovia-Juarez, J.L., Ganguli, S., Kirschner, D.: Identifying control mechanisms of
granuloma formation during M. tuberculosis infection using an agent-based model.
J. Theor. Biol. 231(3) (2004) 357–376



36 C. Beauchemin, S. Forrest, and F.T. Koster

18. Warrender, C., Forrest, S., Koster, F.: Modeling intercellular interactions in early
Mycobaterium infection. B. Math. Biol. (in press)

19. Edelstein-Keshet, L., Spiros, A.: Exploring the formation of Alzheimer’s disease
senile plaques in silico. J. Theor. Biol. 216(3) (2002) 301–326

20. Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artif.
Life in press (2006)

21. Gerety, R., Spencer, S.L., Pienta, K.J., Forrest, S.: Modeling somatic evolution in
tumorigenesis. PLoS Comput. Biol. in review (2006)
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Abstract. Here we propose that frustration within dynamic interactions 
between cells can provide the basis for a functional immune system. Cellular 
frustration arises when cells in the immune system interact through exchanges 
of potentially conflicting and diverse signals. This results in dynamic changes 
in the configuration of cells that interact. If a response such as cellular 
activation, apoptosis or proliferation only takes place when two cells interact 
for a sufficiently long and characteristic time, then tolerance can be understood 
as the state in which no cells reach this stage and an immune response can 
result from a disruption of the frustrated state. Within this framework, high 
specificity in immune reactions is a result of a generalized kinetic proofreading 
mechanism that takes place at the intercellular level. An immune reaction could 
be directed against any cell, but this is still compatible with maintaining perfect 
specific tolerance against self.  

Keywords: self-nonself discrimination, tolerance, homeostasis, cellular 
frustration, generalized kinetic proofreading. 

1   Introduction 

Distinguishing self from non-self is understood in many systems at the level of 
specific molecular processes between individual cells. In contrast, relatively little 
progress has been made in understanding how the complexity of interactions between 
populations of many different cells contribute to the functional discrimination 
between self and non-self. Some theoretical models have attempted to study such 
complicated interactions at the population level [1-5]. Broadly, present theoretical 
models of both innate and adaptive immunity assume that effector functions are 
triggered when a non-self pattern is recognized. In all these models, recognition is not 
the outcome of an optimization process; rather it is a non-linear (often binary) 
response to a pattern. This happens when an antibody binds to an antigen (as modeled 
by affinity shape space models [6,7]), or when a T cell detects agonist peptide-MHC 
complexes (pMHC) [2,8,9]. High specificity in the recognition process is helped by 
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kinetic proofreading mechanisms [10-12] during the scanning of APC ligands. 
Although, strong discrimination can be achieved during an intercellular interaction, 
this is likely insufficient in establishing a reliable and safe discrimination of self and 
nonself. 

Broadly, there are usually two points of view regarding how a binary response to 
a pattern can result in a functional immune system: Either that this discrimination 
may be imperfect [2, 8, 9] and hence killing self cells happens at a certain rate, 
even in the absence of antigen, or that alternatively it is assumed that a certain 
pattern (which can even be the ubiquity of certain peptides) allows perfect 
discrimination. Both these approaches raise questions that only future research may 
clarify. For instance, the notion that some cells are killed ‘by mistake’ is inefficient 
and requires a continuous supply of new cells. This in turn requires functional 
selection of, for example, T cells throughout adult lifetime, perhaps using the adult 
thymus. It remains uncertain how adult thymus involution can be compatible with 
this (discussed further in [2]). The notion that patterns can perfectly define self and 
non-self is not easily reconcilable with evidence that pathogens can often mimic self 
patterns.  In addition it is unclear how immune cells would robustly coordinate their 
responses and minimize the existence of holes in shape space (that is, regions of non-
self peptide sequences not covered by any immune cell) [8, 9, 13], while keeping 
autoimmunity to a minimum.  

Here, motivated by some recent experimental findings in immunology and a recent 
theoretical work in evolutionary biology, we derive a new conceptual framework to 
understand how an adaptive immune system could work. Self and nonself emerges as 
a whole system property: the self is defined as the set of cells that can keep short lived 
intercellular contacts, without ever mounting an immune reaction. Our assumptions 
require the introduction of a new concept, cellular frustration. Cellular frustration 
enables accomplishing two apparently incompatible tasks, namely, a highly specific 
and sensitive reaction against nonself, together with the possibility of maintaining 
absolute tolerance in the absence of the antigen. 

2   What Is Cellular Frustration? 

Frustration can be simply understood through the following example: Can one be 
friends of two mutual enemies? Frustration arises because no stable configuration 
exists that simultaneously satisfies all the elements interacting in the system. 
Consequently, the system fluctuates among several possible configurations. Frustration 
has already been studied in the context of immunology by Bersini and Calenbuhr [14, 
15], who showed that a frustrated idiotypic network could display rich dynamics with 
chaotic behavior, and that frustration in these systems helped maintain tolerance after 
antigen detection. 

In the present work frustration operates in a different way and with a different 
purpose. The mechanism we propose received inspiration from a work discussing the 
origin of species [16]. These authors showed that robust reproductive barriers emerge 
especially when no barriers exist at the level of individual mating rules. This 
apparently paradoxical result resulted from the existence of a complex (competitive) 
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mating dynamics that strongly enhanced some mating associations over others (i.e., 
the assortativeness). Hence, mating barriers at the individual level emerged from the 
mating dynamics within the population.  

Establishing an immune system has some parallels with this view of speciation in 
that tolerance and high specificity in immune responses arise in a system with high 
degeneracy, i.e. where many cells can interact with each other. The situation is 
nevertheless more complex in an immune system because tolerance to self requires 
that interactions between ‘healthy’ self cells should not be productive in terms of 
effector functions.  

Consider three cells, A, B and C, each with a diverse set of ligands and receptors. 
For the purpose of simplicity, assume that each cell can only maintain interactions 
with one cell at a time. Consequently, if two cells are conjugated and a third cell starts 
an interaction with one of the cells in the conjugate, the conjugated cell has two 
alternatives: either it engages in this new interaction or it does not favor the new 
interaction and maintains the former one. This decision process implies that cells 
perform an integration of the signals they receive and respond after an optimization 
process. Cellular frustration arises if a chain of interactions, as shown in Fig.1, 
persists such that interactions are never long-lived.  

  

Fig. 1. Cellular frustration among three cells. A system of cells is frustrated if intercellular 
interactions do not allow long-lived interactions to emerge. This is schematically presented 
here: Initially, cells A and B are conjugated (configuration in the first square). Then C interacts 
with cell B, which prevents maintaining the interaction between cells A and B and leads to the 
second configuration. If then cell A approaches cell C, the conjugate CB is destroyed and a new 
conjugate AC is formed (third configuration). As in other, physical or social, systems, no stable 
configuration is reached, and the system fluctuates over several possible states. 

Cellular frustration requires several assumptions: 

Assumption 1: Cellular Crossreactivity 
Cells can interact and potentially react with a large set of other cells. 

Assumption 2: Cells are selective 
Each cell selects among alternatives and can only maintain interactions with a limited 
number of cells. (Here, we use the approximation that one cell can only maintain 
long-lasting interactions with one other cell at a given time). 
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Assumption 3: Cellular Conflict 
Ligands and receptors in different cells of the immune system lead to conflicting 
interactions (for instance, while one cell promotes interaction with one other cell, this 
other cell may promote interactions with another different cell, provided it is given 
the opportunity).    

A fourth assumption will also be required in order to render cellular frustration a 
functionally powerful mechanism that establishes both tolerance and selective 
reactivity against non-self. 

Assumption 4: An effector response takes place only after two cells have been 
interacting for a characteristic amount of time.   

3   Evidence for Cellular Frustration? 

Although no experimental proof of the cellular frustration concept exists, here we 
argue that important experimental results are at least consistent with the possibility. 
Readers not initially concerned with experimental details may skip this section 
without any loss in understanding the model proposed. 

Assumption 1: Cellular crossreactivity. There is extensive experimental evidence 
that immune cells display a huge variety in their capacity to interact with other cells. 
Dendritic cells (DC), for example, can interact with CD4+ or CD8+ T cells, 
regulatory T cells [17], B cells [18], other DC [19], granulocytes [20], Natural Killer 
cells [21], or with non-hematopoietic cells, such as splenic stroma cells [22].  

There is also wide variety in T cell interactions. CD4+ T (helper) cells can be 
activated by cells that present antigen in the context of class II Major 
Histocompatibility Complex (MHC), such as DC, macrophages and B cells. In 
addition, T cell function can be stimulated by NK cells [23] and mast cells [24]. T 
cells can also contact many different types of target cells in the effector phase. 
Cytotoxic T cells for example monitor all the cells of the body. Interestingly, even 
neuronal cells have been described to influence T cell function [25]. 

Interactions among T cells themselves play an important role in regulatory 
activities of the immune system. Regulatory T cells can either target effector T cells 
directly [26] or modulate the T cell activating capacity of APC [17, 27]. Anergic T 
cells in their turn can pass on immune responsiveness by down regulation of other T 
cell responses [28, 29]. Moreover, pMHCs from APC can be acquired by T cells and 
internalized in such a way that T cells became sensitive to peptide-specific lysis by 
neighboring T cells [30]. Hence, immune cells are capable of interacting with a wide 
variety of other cells. 

Assumption 2: Immune system cells are selective. During the induction phase of an 
immune response it is likely that immune cells encounter a variety of stimulatory 
cells. An important question is whether cells in this case select for interaction with 
cells that offer the highest stimulus. Regarding the T cell-APC interactions, T cells 
were observed to have short interactions with different APC, before engaging in a 
long-term interaction with a particular APC [31, 32]. The sequential encounters of T 
cells could indicate selection of the APC that offers the strongest stimulus. In favor of 
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this hypothesis, Valitutti’s group recently showed that helper T cells are indeed able 
to scan several adjacent APCs, thereby selecting for the APC loaded with the highest 
amount of antigen [33].  

Assumption 3: Intercellular Signals are Bidirectional and potentially conflicting. 
Due to the use of one-sided read-out systems in immune cell stimulation studies, 
interactions between immune cells have often been regarded as unidirectional in terms 
of information transfer. However, evidence is now accumulating that during immune 
cell interaction there is an exchange of signals, leading to changes in behavior of all 
cells involved. Numerous membrane-associated proteins that bind receptors on the 
opposing cell surface have been shown to possess signal transduction capacity. This 
process of “reversed signaling” is most obvious in members of the Tumor Necrosis 
Factor (TNF) family members, like TNF, CD40L, FasL, TRAIL and others [34].  

Although the interaction between APC and T cells has long been regarded as a 
unidirectional process leading to a change in activation status of the T cell, potential 
activation of signaling pathways within the APC during this interaction has been 
tested sporadically. For example cross-linking of MHC class II molecules by TCR or 
antibodies can lead to changes in adhesive capacity [35], apoptosis, or maturation 
[36]. Also interactions between T cells and mast cells were found to be bidirectional, 
with mast cells being able to activate T cells, and to release both granule-associated 
mediators and cytokines as a result of interaction with T cells [24].  

Another example of bidirectionality between immune cells is the interaction 
between NK cells and DC [37]. During NK-DC interactions, activated NK cells can 
induce DC maturation. Cytokines produced by activated DC, on the other hand, 
enhance the proliferation, cytokine production and cytotoxicity of NK cells.  

Assumption 4: An effector function takes place only if two cells have been 
interacting for a characteristic amount of time. This assumption has also been 
receiving increasing experimental support. The signal strength of T cell stimulation 
by APC can be determined by both the concentration of antigen, the presence of co-
stimulation and the duration of the T cell-APC interaction [38]. Prolonged interaction 
with APC was shown to be important for both effective T cell priming [39] and 
polarization of the T cell response, e.g. into different helper subsets [40]. Importantly, 
in vivo studies also show that interaction times of CD4+ and CD8+ T cells with APC 
are significantly increased in the presence of specific antigen compared to T cell-APC 
interaction times in the absence of antigen [32]. It therefore seems realistic to assume 
that in order to establish a productive contact, i.e. a contact that leads to induction of 
T cell effector function, prolonged interaction between T cells and APC is a necessity. 
Although for induction of a cytotoxic response by NK cells and CTL interaction times 
can be much shorter than in the priming phase, a minimal duration of the interaction 
between effector and target cell is nevertheless necessary in order to elicit effector cell 
function [41]. There is a significant body of evidence that the assembly of an 
immunological synapse occurs in stages (reviewed in [42, 43]). Thus, cells must 
interact for a certain amount of time to elicit at least some types of responses.  

Thus, cells require a finite amount of time and only after a characteristic time is an 
effector function triggered.  



42 F.V. de Abreu et al. 

 

4   Cellular Frustration Can Establish the Principles of an Immune 
System 

The purpose of this work is to show that cellular frustration provides an alternative 
framework that explains self-nonself discrimination not as a two-cell process, but as 
an emerging principle of the whole system. Cellular frustration is compatible with a 
somatically generated immunological repertoire; it avoids the existence of holes in 
shape space, while maintaining perfect specific tolerance.  

To understand why this can happen we question whether there can be a system of 
mutually interacting elements, which can all potentially react but never reach this 
state because they are frustrated due to interactions with other elements in the system? 
Here by interaction we mean the process during which two cells sense each others 
ligands through their receptors and by reaction it is meant an effector function that 
only takes place if two cells interact for a time longer than a characteristic time T. 

As it is known from the study of the stable roommate problem [44], it is possible to 
define a set of mutually interacting elements that never reach the reaction state 
described above. To exemplify this, consider a simple system made of 3 cells, A, B and 
C. Assume that each of these cells promote interactions according to an interaction list 
(Table 1), in such a way that, if given a chance, they always promote interactions with 
cells that are on upper positions in their interaction list (IL). Then it is easy to verify that 
all associations are unstable due to the possibility of contacting with the third cell.  

Table 1. Interaction List (IL) for a system of three frustrated cells. In each column the IL of the 
cell on the top line is defined. According to this list, cell A tries to bind to cell C, if it is 
unbound: however,if given the opportunity, it would bind to cell B and detach from cell C. This 
sequence of interactions corresponds to the one described in Fig.1. 

A B C 
B C A 
C A B 

Consider a simple algorithm in which at each time-step each cell is given an 
opportunity to interact with another cell. Thus, in each time-step, a new conjugate can 
be established and a former one terminated. In the simple case in Table 1, at each time-
step the probability that a new interaction is established at the expense of a former 
interaction, is 1, because there is always one bound cell that interacts but prefers another 
cell. In this particular system, provided interactions do not lead to instantaneous 
reactions, the system is frustrated, and thus in a tolerant or homeostatic state.  

An interesting situation arises when one adds a new cell into the frustrated system. 
If one considers that there are no identical cells, then cell D has to appear on the 
bottom of the ILs of all the other cells, otherwise the system comes out of the tolerant 
state. Hence, to keep the system in the tolerant state, the fourth cell D has very 
specific ligands. Yet, the IL of cell D is arbitrary. Hence, tolerance or ‘foreignness’ is 
determined by the system itself and the system is very sensitive relatively to the 
introduction of new cells. In fact, from all the possible ILs for cell D, only 1/27<4% 
keep the system frustrated in this simple system.  
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Another important point to remark is that if cell D behaved exactly as one of the 
other cells already present in the system then the system would not stay in the tolerant 
state. This shows that in this model cells are recognized according to how they 
function with respect to the whole system. This is a useful property for a protection 
system, because it implies that clonal proliferation of an infected cell would not be a 
successful strategy for a pathogen. Rather pathogens need to mutate in order to 
successfully infect the host. Further, it also shows that a certain level of arbitrariness 
exists concerning the definition of the ligands and receptors in the system. What is 
required is that cell A senses cell B with maximal avidity, cell B senses with maximal 
avidity cell C, and so on. This says nothing about what cell’s A receptors are, 
allowing them to be somatically defined, as required in an adaptive immune system. 

Although the previous solution allows the system to remain in the frustrated state, 
it requires that cell D has low avidity relative to all the other cells in the system. This 
may not always be achieved in a particular system provided thymic positive selection 
has selected reactive cells to span uniformly a complete space of sequences. To see 
this more clearly, imagine that a ligand or a receptor are defined through a sequence 
of bits and that affinity is proportional to the number of bits in common between the 
ligand and the receptor (i.e. through a Hamming distance). Then, provided the set of 
receptors in the system is uniformly distributed, it is not possible to define a ligand 
that is simultaneously more anticorrelated with all the receptors in the system. This 
remark is important, because it shows that thymic selection may have a double 
function which is not only to select reactive cells, but also to provide a uniform 
distribution of receptors and ligands. A more detailed analysis of thymic repertoire 
selection in the light of the present theory will be discussed in a forthcoming paper. 

The previous results are restricted to populations with a small number, N, of 
elements. Can we generalize these results to arbitrary N? For N odd it is easy to 
establish that there exists a system exhibiting full frustration. Considering that the cell 
at position j at the interaction list of cell i is Li(j), then the list verifies the requirement:   

Li(j)= Lu(N-j), where u= Li(j) . (1) 

Hence, if cell i has on the top position (j=1) of its IL, cell j, then cell j has on the 
bottom of its IL cell i. This simple rule forces frustration. For a system with an odd 
number of elements, it then becomes straightforward to show that such a system never 
attains a stable configuration, as there is always at least one unbound element that is 
at the top position of the IL of one in the system. Consequently it is always possible to 
destabilize at least one pair of bound cells.    

The same argument does not apply to systems with N even, in which case the 
system can converge to a stable configuration. However, due to the complexity of the 
cellular interactions, for populations with N even the system converges very slowly to 
the stable solution. In Fig.2 we see that the number of iterations required grows 
exponentially fast with N. Hence, although for N even the system has a stable 
configuration, the dynamics of the system is governed by the proximity to a 
computationally hard problem [45]. Hence, from a biological point of view, the 
system behaves as in the N odd case. And in fact the duration of cellular contacts 
behaves as in the N odd case (Fig.2 (left)).  

Fig.2 (left) also shows that interactions’ lifetimes decay exponentially. This is not 
an obvious result, because Almeida and Vistulo de Abreu [16] obtained a power law 
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decay. However, a fundamental difference exists between both models. In the present 
case interaction lists have a particular order that establishes a global frustration state 
in the system. On the contrary, in [16] lists were random which allowed a much 
greater diversity of interactions lifetimes. Hence, in that work, power law (scale free) 
behavior reflected the absence of a typical lifetime. 
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Fig. 2. Left: Frequency of interactions that lasted τ iterations in populations with 21 or 20 
elements. These histograms were calculated using one population for 106 iterations. The first 
103 where not considered to avoid including transient effects. Right: The number of iterations 
required to reach the stable configuration for a population with N even. There is an exponential 
growth of the number of iterations N

it
 required: N

it
 ~ exp(0.8N). For a population with N=20, 

around 107 iterations would be required. 

In order to better understand this result consider a conjugate formed between cells i 
and r. At each time-step each cell has a probability respectively p and q to find a 
higher ranked cell to interact with, and to terminate the former i-r conjugate. Hence, 
the probability that the i-r conjugate terminates is:   

P=p+q-pq . (2) 

The probability that a conjugate lives for exactly τ time-steps is then: 

Pτ =(1-P)τ−1 P. (3) 

This equation implies that any conjugate displays a typical exponential lifetime decay 
behavior: Pτ =(1-P)τ−1 P ≅  P/(1-P) exp(-Pτ) ∼ exp(-Pτ). In the particular case of the 

IL in (1), equation (2) is simplified because q=1-p, which leads to 21 ppP +−= . 
Hence, in this case P varies between 3/4 and 1, whereas in the most general case of 
random ILs, P can vary between 0 and 1. This is fundamentally different because it 
implies that in the former case interactions are short-lived, whereas in the last case 
there are interactions that never terminate. In order to calculate Nτ , a sum over the 
possible interactions has to be considered. Assuming for simplicity that all conjugates 
occur with an equal frequency fP, then we get: 

−−= −−
b

a

b

a
P dPPPdPPPfN 11 )1(~)1( ττ

τ  . (4) 

The integral can be integrated by parts. The difference between the two cases is now 
in the correct choice of the limits of integration a and b. In the frustrated case a=3/4 
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and b=1, leads to: )38.1exp(~ ττ −N . In the numerical simulations (Fig.3) we obtained 

exponents close to 1, instead of 1.38. The difference between the two values is due to 
the crude approximation of fP used above (see Fig.3 (right)). In the random case, we 

obtain: 2~ −ττN . Here again the exponent is not the same as the one found in [16] 

(which was -2.5), again due to the approximations used. Nevertheless with this 
calculation we were able to understand how two distinctive behaviors can be found and 
that the power law behavior in Nτ signals the existence of processes with many different 
lifetimes. Hence, Fig.3 shows that, even if the system could display a continuum of 
different lifetimes, the frustrated system displays a single well defined lifetime. 
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Fig. 3. The distribution function Nτ (calculated as in Fig.2) converges quickly to the asymptotic 
distribution, when the number of cells in the system varies from N=11 to N=501 (Left). The 
distribution for N=51 and N=501 is almost the same, and given by an exponential 

)exp( ττ −≅ AN . This quick convergence shows that the properties of the model do not depend 

crucially on the number of cells involved. This shows that the model is robust in the sense that 
generalizations to account for spatial effects should not produce different results (provided the 
densities are not too low). (Right) The distribution of the rank in the IL occupied by a conjugated 
cell in the other cell’s IL. We used a population with N=501. This distribution is directly related 
to fP (see equation (4)), which is not uniform as assumed in the calculation of the exponents.  

The previous analysis is important to discuss the impact of the introduction of a 
new cell into the system. What happens if the frustration is broken? Does the system 
break up into a set of long lived interactions (as could happen after introducing a 
random cell into the N=3 system discussed above)?  

The recursive (self-similar) structure given by (1) provides a simple answer: for 
large N, after removing any number of cells from the system, we again obtain a 
system in which ILs for the remaining cells have the same structure as the initial ILs. 
Hence, if a new randomly generated cell is introduced in the system it can produce a 
long lived conjugate and we can view the resulting system as being composed of the 
conjugate involving the new cell and the remaining fully frustrated system. This 
guarantees that the system remains stable upon introduction of a pathogen. 

It should also be remarked that, contrary to the cases where N=3 or N=4, recognition 
of the external pathogen should not require an infinitely long-lived binding. Thus, to 
define a functional immune system, we invoke assumption 4, and determine that a 
response will occur for interactions whose lifetimes significantly exceed a typical 
lifetime. For instance, in the example of Fig.2, it could be determined that only if a 
conjugate lived for 20 units of time, then an effector function would take place. 
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Fig. 4. The distribution Nτ for the frustrated system with N=50 cells and 1 pathogenic cell with 
a random set of ligands. The distribution function was calculated using the same procedure as 
in Fig.3. On the left the distribution function is plotted as in Fig.3, showing that a long tail 
appears corresponding to long-lived interactions. On the right the same distribution is plotted in 
a double logarithmic scale to highlight the power law behavior emerging for the long-lived 
interactions. 

In order to be more precise, we now consider some numerical examples. Consider 
a population with N=51 cells from Fig.3 where one cell has been replaced by a 
pathogenic cell, i.e., a cell that presents a foreign peptide. This population can be 
simulated constructing the ILs as in (1), for N=51 cells, but where the presence of the 
pathogenic cell (say cell 1) in the others cell’s ILs is moved a random number of 
positions (up or down). The IL for cell 1 stays the same. In this way we assume that 
only the ligands of the pathogenic cell change while the receptors of this cell remain 
the same. It is interesting to remark how the distribution Nτ changes so dramatically 
with this single cell substitution (see Fig.4). A power law tail now appears which is 
due to the appearance of long-lived interactions. These long-lived interactions involve 
the pathogenic cell. In over 100 populations simulated, all the interactions lasting 
longer than τ=20 iterations steps involved cell 1. This is interesting because it shows 
that the system is performing self-nonself recognition with high specificity. 

In order to understand how sensitive this discrimination is, we next performed the 
same simulation but where the range of changes in the ILs was restricted: the position 
of the pathogenic cell in the other cell’s ILs was moved only 1 position, up or down. 
Typical examples are shown in Fig.5, where it can be seen that there are long lasting 
interactions occurring, although in smaller number than in the previous case. 

How the system achieves such high sensitivity and specific self-nonself 
discrimination can be seen as arising from a generalized kinetic proofreading 
mechanism, and was first discussed in [16]. In the frustrated state interactions have a 
probability to terminate given by equation (2), with q=1-p. If ILs are changed due to a 
change in the rank of the pathogenic cell, then q increases for some interactions and 
decreases for others. Hence, certain interactions involving the pathogenic cell can 
decrease their unbinding probability to P*, while in a first approximation interactions 
not involving the pathogenic cell do not change their unbinding probability P, given 
by (2). Considering the probability that a conjugate remains bound for τ time-steps, 
we obtain (using (3)): 

P*
τ / Pτ =[(1-P*)/(1-P)]τ−1 P*/P .  (5) 
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Fig. 5. Distributions Nτ for a system with N=50 cells and 1 pathogenic cell with slightly 
randomly changed ligands. Each case corresponds to a different pathogenic cell. All cells have 
ILs given by (1), except that the position occupied by the pathogenic cell in the ILs have 
randomly been displaced one position up or down. Even with this small difference the system is 
able to perform self-nonself recognition, because several long lasting interactions emerge 
involving the pathogenic cell.   

Although in principle P and P* can be similar, as happens in a kinetic proofreading 
mechanism [2, 11, 12, 46, 47] this ratio can become significant because of the 
exponent τ−1, that accounts for the several steps required before any effector function 
takes place. However here, contrary to what happens in conventional kinetic 
proofreading mechanisms, a pre-defined sequence of interactions does not need to be 
imposed. Rather, it emerges naturally from the frustrated dynamics. For this reason 
we call this a generalization of the kinetic proofreading mechanism.  
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Fig. 6. A system with three distinct cell types or classes (N=501) and an IL constructed using a 
structure analogous as in (1). (Left) Cells belonging to class A, have on the top of their ILs cells 
from class B (specific cells within that class being randomly ordered), then those from class C 
(randomly ordered), and at the bottom those from their own class (also randomly ordered). 
(Right) The distribution Nτ is approximately exponential in the absence of pathogens and when 
the frequencies of each class of cell are adjusted to their equilibrium values (N

A
=N

B
=N

C
=167). 

When one class of cells increases considerably relatively to the others (dark squares; N
A
=237, 

N
B
=N

C
=127), long-lasting interactions are formed by cells from classes A and B. This result 

shows the possibility of homeostatic control of the outgrowing population of cells. In this case, 
cells from the self were seen as non-self.     

Another important issue concerns the nature of the cells involved in the long-lived 
interactions: all long-lived interactions involved a cell that ranked in top positions in 
the IL of the pathogenic cell. Due to the requirement of frustration, the other cell must 
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have a low avidity for the pathogenic cell before infection, but which has increased 
the most after infection. In other words, recognition in this system results from 
changes relative to the remaining population of interacting cells and not on the 
absolute values of the affinities between ligands and receptors.  

Towards modeling the physiological immune system, we next generalized our 
approach to include different cell types (or classes), such that ILs are structured 
according to (1), with respect to interactions between cells of different cell types. This 
means that cells belonging to class A would first have all cells belonging to class B, 
then those of class C and at last the remaining cells of their own type, on their IL. The 
way cells of a same type are organized in the appropriate region of the IL, can also be 
structured, but in the next example they were randomly distributed. This arrangement 
of ILs allows defining a new system that still preserves a frustrated dynamics, as 
shown in Fig.6, and where it is again possible to detect pathogens as described above. 

Long-Lived
Conjugate 

Effector Function 

APC-T1
 T1 cell activation/ 
T1 cell proliferation 

T1-T2

T2 proliferation/ 
T1 cell apoptosis, inhibition or 
anergy 

T2-APC T2 apoptosis, inhibition or 
anergy  

 

Fig. 7. The mechanism of recognition in lymph nodes may result from a frustrated dynamics 
involving APCs and T cells of at least two types. (Left) Given a chance, T1 cells conjugated to 
APCs and detecting a T2 cell, should promote interactions with T2 cells and terminate previous 
interactions with the APC. A similar analysis would apply to the other possible interactions in 
the system. (Right) If long-lived interactions emerge, immune reactions take place that allow a 
negative feedback loop to stabilize the system. For instance, if a long-lived APC-T1 cell 
conjugate emerges (resulting for example from the presentation of a foreign peptide or from the 
uncontrolled proliferation of self cells), then convenient effector function that leads to negative 
feedback consists in T1 cell activation (which will reduce the presentation of this peptide in the 
future) or/and T1 cell proliferation (to increase the attack of pathogens). 

Interestingly, as cells belonging to the same type can interact and possibly react 
with each other, the system is able to respond to significant changes in the number of 
cells in each class. Hence, if one cell type expands considerably relatively to its 
numbers in the frustrated dynamical equilibrium , it would be possible to detect and 
react against this growth. This is an interesting homeostatic property of the system 
useful to fight virus infected cells or tumor growth. Here again we observed that the 
long-lived interactions were formed involving cells belonging to the cell type that 
grew and those cells for which these cells have bigger avidity (in the example of 
Fig.6, long-lived interactions involve cells of type A and B). This happens because 
there are cells of type A that became highly ranked in the ILs of some cells of type B, 
in comparison to the stable configuration situation. 

This example is the simplest that could describe interactions between T cells and 
APCs in lymphoid organs. It can describe a scenario where one T cell type could 
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suppress the activation of the other in order to maintain tolerance. It is then possible 
to establish several types of effector functions that introduce negative feedback and 
stabilize the system in its homeostatic equilibrium (Fig.7). A similar frustrated 
dynamics could also take place at sites of inflammation. However in this case the 
mechanism should be confined, e.g. to environments where the several T cells are 
present in such a way that frustration is sustained. Otherwise disruptive selection 
could take place and lead to autoimmune disease. Hence, we propose that the cellular 
frustration mechanism could take place first in the thymus (during the selection of the 
system) and then in lymph nodes for the activation of T and B lymphocytes.  

5   Conclusions 

This work presents a conceptually new approach to the problem of modelling cellular 
interactions in the adaptive immune system. As in previous models, it assumes that 
kinetic proofreading mechanisms take place when a cell scans the ligands on another 
cell [11] to build specific ILs. To establish strong discrimination between self and 
nonself in our model, we assumed that the cells of the immune system were 
frustrated. In this system of frustrated interactions, immune responses can be triggered 
because the introduction of pathogenic cells leads to a disruptive cellular selection. 
This is achieved with high sensitivity as a result of a generalized kinetic proofreading 
mechanism, that is, a kinetic proofreading mechanism that takes place at the level of 
cells. In this framework all cells are surveilled and susceptible to immune responses. 
Consequently, the system is also intrinsically capable of maintaining homeostasis. In 
our framework, the self is defined as the set of cells that can keep short lived 
intercellular contacts, without ever mounting an immune reaction. In this manner, 
discrimination of self and nonself emerges as a property of the whole system. 
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Abstract. We consider the human body as a well-orchestrated sys-
tem of interacting swarms. Utilizing swarm intelligence techniques, we
present our latest virtual simulation and experimentation environment,
IMMS:VIGO::3D, to explore key aspects of the human immune system.
Immune system cells and related entities (viruses, bacteria, cytokines)
are represented as virtual agents inside 3-dimensional, decentralized and
compartmentalized environments that represent primary and secondary
lymphoid organs as well as vascular and lymphatic vessels. Specific im-
mune system responses emerge as by-products from collective interac-
tions among the involved simulated ‘agents’ and their environment. We
demonstrate simulation results for clonal selection and primary and sec-
ondary collective responses after viral infection, as well as the key
response patterns encountered during bacterial infection. We see this
simulation environment as an essential step towards a hierarchical whole-
body simulation of the immune system, both for educational and research
purposes.

1 Introduction

Computer-based tools and virtual simulations are changing the way of biological
research. Immunology is no exception. Computers become even more capable of
running large-scale models of complex biological systems. Recent advancements
in grid computing technologies make high-performance computer resources read-
ily accessible to almost everybody [1]. Consequently, even highly sophisticated
– and to a large extent still poorly understood – processes such as the inner
workings of immune system defense mechanisms can now be tackled by agent-
based models in combination with interactive visualization components. These
agent models serve as an essential complement to modeling approaches that are
traditionally more abstract and purely mathematical [6,7].

Our Evolutionary & Swarm Design Laboratory is building and promoting
agent-based models, with distributed simulation and visualization capabilities,
utilizing swarm intelligence methodologies [2]. The combination of visual and
intuitive user interfaces, in combination with the latest technology in visualiza-
tion (including 3D-immersive environments in CAVES) and distributed high-
performance computing, makes our models more accessible to researchers in the
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life sciences community, who usually do not have any programming background
or any aspiration nor time to learn how to use a modeling environment. Making
simulation tools (almost) seamless to use for researchers and introducing such
tools into classrooms in biology and medicine greatly increases the understanding
of how useful computer-based simulations can be in order to explore and facili-
tate answers to research questions and, as a side effect, gain an appreciation of
emergent effects resulting from orchestrated interactions of ‘bio-agents’.

In this paper we present our latest version of a swarm-based simulation envi-
ronment, which, we think, fulfills these criteria, and implements an interactive
virtual laboratory for the exploration of the interplay of human immune system
agents and their resulting overall response patterns. The rest of the paper is
organized as follows. In Section 2 we give an overview of related simulation and
modeling approaches regarding immune system processes. A biological perspec-
tive of the decentralized immune defenses is presented in Section 3. The key
design aspects and main results of our IMMS:VIGO::3D simulation system are
described in Section 4, where we also discuss simulation experiments for clonal
selection, primary and secondary responses to viral infection, as well as reac-
tions to bacterial infection. Finally, in Section 5, we conclude the paper with a
summary of our work and suggestions for the necessary next steps towards an
encompassing immune system simulation environment.

2 Related and Previous Work

The immune system (IS) has been studied from a modeling perspective for a long
time. Early, more general approaches looked at the immune system in the context
of adaptive and learning systems [3,4], with some connections to early artificial
intelligence approaches [5]. Purely mathematical models, mainly based on dif-
ferential equations, try to capture the overall behaviour patterns and changes of
concentrations during immune system responses [6,7,8,9,10]. A more recent alge-
braic model of B and T cell interactions provides a formal basis to describe bind-
ing and mutual recognition, and can serve as a mathematical basis for further
computational models, similar to formalisms for artificial neural networks [11].

Agent-based computational approaches, in the form of cellular automata, in-
troduced spacial aspects to immune system simulations [12]. In the context
of clonal selection, the influence of different affinities among interacting func-
tional units, which leads to self-organizing properties, was recognized and studied
through computational models [13,14]. These models have been expanded into
larger and more general simulation environments for various aspects of the hu-
man immune system [15,16]. There is also a large number of modeling approaches
within specific areas in the context of immune system-related processes, such as
for HIV/AIDS [17]. An excellent overview of these modeling strategies can be
found in [18].

Most current methods consider immune response processes as emergent phe-
nomena in complex adaptive system [10], where agent-based models play a more
and more dominant role [19,20], even in the broader application domain of
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bio-molecular and chemical interaction models [21]. We see the most promising
potential in agent models that incorporate swarm intelligence techniques [2,22],
as this results in more accurate and realistic models, in particular when spacial
aspects play a key role in defining patterns of interaction, in understanding their
emergent properties, and in helping to shed some light on the inner workings
of complexity as, for example, displayed by the immune system. Biological sys-
tems inherently operate in a 3-dimensional world. Therefore, we have focused
our efforts on building swarm-based, 3-D simulations of biological systems which
exhibit a high degree of self-organization, triggered by relatively simple interac-
tions of a large number of agents of different types. The immune system is just
one example that allows for this bottom-up modeling approach. Other models
include the study of chemotaxis within a colony of evolving bacteria [23,24], the
simulation of transcription, translation, and specific gene regulatory processes
within the lactose operon [25,26], as well as studies of affinity and cooperation
among gene regulatory agents for the λ switch in E. coli [27].

3 The Decentralized Defenses of Immunity

One aspect that makes the human immune system particularly interesting—
but more challenging from a modeling perspective—is its vastly decentralized
arrangement. Tissue and organs of the lymphatic system are widely spread
throughout the body, which provides good coverage against any infectious agents
that might enter the body at almost any location. Even the two key play-
ers responsible for specific immunity originate from different locations within
the body: T cells come from the thymus, whereas B cells are made in the
bone marrow. The lymphocytes then travel through the blood stream to sec-
ondary lymphoid organs: the lymph nodes, spleen, and tonsils. Within these
organs, B and T cells are rather tightly packed, but can still move around freely,
which makes them easier to model as agents interacting in a 3-D simulation
space.

Lymph nodes can then be considered the primary locations of interactions
among T cells, activated by antigens. T cells, in turn, activate B cells, which
evolve into memory B cells and antibody-producing plasma B cells. Both types of
activated lymphocytes will subsequently enter the lymphatic system, from where
they eventually return to the blood stream. This enables the immune system to
spread its activated agents widely through the body. Finally, the lymphocytes
return to other lymph nodes, where they can recruit further agents or trigger
subsequent responses. Hence, B and T cells as well as other immune system
agents (antibodies, cytokines, dendritic cells, antigen presenting cells, etc.) are
in a constant flow between different locations in the human body [28].

4 Simulating Decentralized Immune Responses

Our overall goal is to build a whole body simulation of the immune system
(Fig. 1). This, of course, does not only require a large amount of computing
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Fig. 1. The decentralized defenses of immunity. Three compartmental modules, that
exhibit distinct but interconnected functionalities within the human immune system,
are implemented in our IMMS:VIGO::3D simulation environment: (1) tissue, (2) blood
vessels, and (3) lymph nodes.

resources, but also requires a modular and hierarchical design of the simulation
framework. Modelers – i.e., immunologists as well as researchers and students
in health sciences – should be able to look at the simulated immune system at
different levels of detail. The whole body simulation will not be as fine grained
as when looking at the interactions within a lymph node or at the intersection
between the lymphatic and vascular system.

In our current implementation we have incorporated three distinct, but inter-
connected sites within the human body that are related to the immune system:

– Lymph Nodes: Within a lymph node section we incorporate adaptive im-
mune system processes during clonal selection, in response to viral antigens
entering the lymph node. Different types of B cell strands can be defined.
In case of a high degree of matching with an antigen, rapid proliferation is
triggered.

– Tissue: Within a small section of tissue we model the immune system pro-
cesses during primary and secondary response reactions among viruses (with
their associated antigen components), tissue cells, dendritic cells, helper T
and killer T cells, memory and plasma B cells (with their associated anti-
bodies), and macrophages.

– Blood Vessel-Tissue Interfaces: At the interface between blood vessels
and tissue, we simulate red blood cells moving within a section of a blood
vessel, lined with endothelial cells, which can produce selectin and intercel-
lular adhesion molecules (ICAMs). This causes neutrophils to start rolling



56 C. Jacob, S. Steil, and K. Bergmann

along the vessel wall and exit the blood stream into the tissue area. Any bac-
terium within the tissue is subsequently attacked by a neutrophil. During
ingestion of a bacterium by a macrophage, tumor necrosis factor (TNF) is
secreted and the bacterium releases lipopolysaccharides (LPS) from its sur-
face. In turn, TNF triggers selectin production in endothelial cells, whereas
LPS induces endothelial cells to produce ICAM.

The following sections explain our model in more detail with respect to clonal
selection as well as primary and secondary responses within a lymph node area
and a tissue region (Section 4.1). The IS processes triggered during a bacterial
infection within the interface area between a blood vessel and tissue is described
in Section 4.2.

4.1 Simulated Viral Infection

Figure 2 gives an overview of the immune system agents and their interaction
patterns in our model. Each agent is represented by a specific, 3-dimensional
shape, which are also used in the (optional) visual representation of the agents
during a simulation experiment. We demonstrate one experiment to show a typ-
ical simulation sequence.

Clonal Selection within a Lymph Node: In this experiment, we first focus
our attention on a selected lymph node in order to observe the IS agent reactions
after a virus enters the lymph node area (cf. Fig. 1). Initially, 50 B cells as well
as 20 helper-T cells of 8 different types (signatures) are present. Figure 3f shows
that there is a fairly even initial distribution of the different strands of B and T
cells. Around time step t = 14.6, dendritic cells enter the lymph node and present
a single type of viral antigen (Fig. 3b), which stimulates a nearby helper-T cell
and causes a matching B cell (following the Celada-Seiden affinity model [12])
to replicate. Soon after (t = 57.1), a significantly larger population of matching
B cells proliferates the lymph node area (Fig. 3c), where B cells have already
started to emit antibodies. In Fig. 3f the concentration of these fast proliferating
B cells is represented by the green plot. At time point t = 225.0, memory B cells
of the matching strand have become more common. Around t = 256.4, the same
virus is introduced into the lymph node again. Now it is mainly the memory B
cells that trigger the secondary response and replication of plasma B cells which
secrete antibodies (compare the increase of the matching B cell concentration
(green) towards the last third of the graph in Fig. 3f).

Primary and Secondary Response in Tissue: At the same time, while the
simulation of the interactions within the lymph node are running, a concurrent,
second simulation models the response processes in a selected tissue area (cf.
Fig. 1). Circulation of IS agents is implemented by a communication channel be-
tween lymph node and tissue areas. Within the tissue simulation space (Fig. 4a),
we start with 10 dendritic cells, 5 killer-T cells, 5 helper-T cells, 5 macrophages,
60 tissue cells and 5 copies of the same virus introduced into the lymph node as
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Fig. 2. Interactions of immune system agents triggered by viral infection: A virus is
usually identified by its antigens, which alert both dendritic cells and macrophages to
ingest the viruses. Both actions lead to recruitment of further IS cells. Dendritic cells
recruit B cells, which – in particular when activated by helper-T cells – replicate as
memory B cells or proliferate into plasma B cells, which in turn release antibodies to
opsonize the virus. On the other hand, macrophages with an engulfed virus stimulate
an increase in the proliferation of both helper and killer T cells, which are the key
players in cell-mediated immunity and destroy virus-infected tissue cells to prevent
any further spreading of the virus.

described above. In Fig. 4b a cell has been infected by the virus and antibodies
(from the lymph node) start entering the tissue area. Figure 4c shows a close-up
of the important agents: one virus is visible inside an infected cell, another virus
has docked onto the surface of a tissue cell and is about to enter it. A third virus
has already been opsonized by an attached antibody. Now macrophages will
start to engulf opsonized viruses and more macrophages are recruited in large
numbers (Fig. 4d). This triggers an analogous spike in the number of killer-T
and helper-T cells (also compare Fig. 5). The increase in killer-T cells makes it
more likely for these cells to collide with an infected tissue cell and initiate its
apoptosis.

After about 120 time steps, the infection has been fought off, with no more
viruses or antigens remaining in the system (Fig. 5). The concentrations of T
cells and macrophages return to their initial levels. At t = 150.0, the same virus
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(a) t = 3.2 (b) t= 14.6
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Fig. 3. Interactions in a Lymph Node after a viral infection: (a)-(e) Screen captures
(with time point labels) of the graphical simulation interface during clonal selection
and primary and secondary response to a virus. The virtual cameras are pointed at
a lymph node, in which 8 different strands of B cells are present. (f) The change
in concentration of all B cells (brown filled plot) and per strand. The virus that most
closely matches one of the B cell strands triggers its increased proliferation (green filled
plot). The concentrations of all other strands remain low (line plots at the bottom).
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(a) t = 4.4 (b) t= 25.1

(c) t = 40.4 (d) t = 73.6

(e) t = 225.0 (f) t = 268.8

Fig. 4. Interactions in a Tissue Area after a viral infection: Screen captures of the
graphical simulation interface during clonal selection and primary and secondary re-
sponse after viral infection. The virtual cameras are pointed at a tissue region close to
a blood vessel.

is reinserted into the system. Memory B cells inside the lymph node create an
influx of plasma B cells almost immediately. Due to the increased amount of
antibodies emitted, the infection is stopped within a much shorter time interval.



60 C. Jacob, S. Steil, and K. Bergmann

50 100 150 200 250
t

10

20

30

40

50

60

�C� Tissue Cells

50 100 150 200 250
t

10

20

30

40

50

60

�C� Tissue Cells

50 100 150 200 250
t

5

10

15

20

25

�V� Viruses �infectious�

50 100 150 200 250
t

5

10

15

20

25

�V� Viruses �infectious�

50 100 150 200 250
t

2

4

6

8

10

�D� Dendritic Cells

50 100 150 200 250
t

2

4

6

8

10

�D� Dendritic Cells

50 100 150 200 250
t

10

20

30

40

50

�Ag� Antigens

50 100 150 200 250
t

10

20

30

40

50

�Ag� Antigens

50 100 150 200 250
t

2.5

5

7.5

10

12.5

15

�H� Helper T�Cells

50 100 150 200 250
t

2.5

5

7.5

10

12.5

15

�H� Helper T�Cells

50 100 150 200 250
t

50

100

150

200

250

300

�Ab� Antibodies

50 100 150 200 250
t

50

100

150

200

250

300

�Ab� Antibodies

50 100 150 200 250
t

2.5

5

7.5

10

12.5

15

�KT� Killer T�Cells

50 100 150 200 250
t

2.5

5

7.5

10

12.5

15

�KT� Killer T�Cells

50 100 150 200 250
t

5

10

15

20

25

�M� Macrophages

50 100 150 200 250
t

5

10

15

20

25

�M� Macrophages

Fig. 5. Evolution of IS agent concentrations during the primary and secondary re-
sponses in a tissue area

As a result, the infection is stopped within a much shorter time interval, due
to the increased amount of antibodies. Cell-mediated immunity reactions do
start faster as well, but are not as intense as during the first response since
the infection is eliminated more quickly. Consequently, T cells and macrophage
concentrations can remain at a lower level.
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(a) t = 14.0 (b) t = 17.6

(c) t = 37.2 (d) t = 71.7

Fig. 7. Fighting Bacterial Infection: (a) macrophages attacking bacteria, (b) endothe-
lial cells, neutrophils and red blood cells inside the blood vessel, (c) neutrophils (blue)
on their hunt for bacteria, (d) all bacteria have been eliminated
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4.2 Simulated Bacterial Infection

Bacteria within the tissue multiply; their waste products, produced from a large
concentration of bacteria, can be damaging to the human body. Therefore it is
important that the immune system kills off bacterial invaders before this critical
concentration is reached. The following experiment demonstrates immune system
response processes during bacterial infection. The key players and their interac-
tions are outlined in Fig. 6. As this involves not only bacteria and macrophages
but also neutrophils that enter tissue from the vascular system, the simulation
space comprises a segment of a blood vessel (Fig. 7). The tissue-vessel interface
area is initialized with tissue cells, B cells, helper-T cells, macrophages, and a
number of bacteria acting as infectors. The blood vessel, lined with endothelial
cells, contains red blood cells and neutrophils.

Macrophages that engulf bacteria release TNF (tumor necrosis factor) while
lipopolysaccharides (LPS), which are major structural components of Gram-
negative bacterial cell walls, are released into the tissue area (Fig. 7a). Once
endothelial cells get in contact with TNS or LPS, they release selectin or inter-
cellular adhesion molecules (ICAMs), respectively (Fig. 7b). When a neutrophil
collides with an endothelial cell which produces selectin, it will start to roll
along the interior surface of the blood vessel. A neutrophil rolling along an
ICAM-producing endothelial cell will exit the blood stream and head into the
tissue area. Once in the tissue area, neutrophils—together with macrophages—
act as complementary hunters of bacteria (Fig. 7c). Notice the high number of
activated endothelial cells in the blood vessel wall. A bacterium colliding with
a neutrophil is engulfed and consumed, while LPS and TNF are again released
into the system. Finally, all bacteria have been eliminated and the number of
activated endothelial cells is decreased (Fig. 7d). Neutrophils will soon disappear
since the system has recovered from the bacterial infection.

5 Conclusion and Future Research

The IMMS:VIGO::3D simulation environment is currently used as a teaching
tool in biology, medical, and computer science undergraduate and graduate
classes. Due to its visual interface and the ability to specify many simulation
control parameters through configuration files, it serves both as an educational
device as well as an exploration tool for researchers in the life sciences. Students
seem to gain a more ‘memorable’ understanding of different aspects of immune
system processes. Although visualizations can also be misleading, they usually
help in grasping essential concepts, in particular in the case of an orchestrated
system of a multitude of agents. Consequently, from our experience, the visual-
ization component is important for a proper understanding of emergent processes
resulting from the interplay of a relatively large number of agents of different
types with simple but specific local interaction rules. Gaining a proper under-
standing and ‘intuition’ about emergent properties as in the immune system
plays a key role in building today’s biologically accurate computer simulations.
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Of course, our current version does not even come close to the actual numbers
of interacting IS agents (e.g., billions of B cells within a small lymph node sec-
tion). However, according to our experience, key effects within an agent-based
interaction system can already be observed with much smaller numbers. Usually,
only a ‘critical mass’ is needed. This is certainly an area that requires further
investigation, which we currently focus on. Using evolutionary computation tech-
niques, we also explore the effects of different control parameter settings, as well
as how changes in the set of agent interaction rules influence the overall system
behaviour. Being able to easily change agent interaction rules and the types of
agents makes models of complex adaptive systems useful for large-scale scientific
exploration.

Currently, we only have incorporated some of the earlier and basic theories
of how immune system processes might work. Now that we have a flexible and
powerful simulation infrastructure in place, calibrating and validating our mod-
els as well as including more of the recently proposed models is one of our next
steps. We are also expanding our simulations to demonstrate (and help stu-
dents to investigate) why the generation of effective vaccines is difficult and how
spontaneous auto-immunity emerges.

Up-to-date details about our latest immune system model and other agent-
based simulation examples, which are investigated in our Evolutionary & Swarm
Design Lab can be found at: http://www.swarm-design.org.
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Abstract. This paper presents an analysis of the global physical proper-
ties of an idiotypic network, using a growth model with complete dynam-
ics. Detailed studies of the properties of idiotypic networks are valuable
as one the one hand they offer a potential explanation for immunolog-
ical memory, and on the other have been used by engineers in applica-
tion of AIS to a range of diverse applications. The properties of both
homogeneous and heterogeneous networks resulting from the model in
an integer-valued shape-space are analysed and compared. In addition,
the results are contrasted to those obtained using other generic growth
models found in the literature which have been proposed to explain the
structure and growth of biological networks, and also make a useful ad-
dition to previous published results obtained in alternative shape-spaces.
We find a number of both similarities and differences with other growth
models that are worthy of further study.

1 Introduction

The study of the structure and growth of biological networks (e.g idiotypic net-
works or protein-protein interaction networks) has received much attention from
various disciplines in the past, for example statistical physics, mathematics and
immunology, as it becomes apparent that understanding the architecture and
construction process by which these networks are formed plays a crucial role in
understanding the dynamics that can then take place on such networks. Studies
in all these areas have led to the observation that biological networks are not
structured randomly. Frequently, a topology is observed in which there are a few
nodes which interact with a large number of other nodes (known as the hubs),
and many nodes which interact with only a few nodes. The same type of topology
is also observed in other real-world networks, such as social and technological
networks, for example co-authorship of physics papers or the world-wide-web —
such networks are referred to as scale-free, and the networks exhibit a number
of interesting properties when compared to random graphs of equivalent size.

A number of growth models have been proposed in an attempt to describe
the origins of these real-world networks. Perhaps the most prevalent is due to
Barabasi and Albert [1] which proposes a growth model based on preferential
attachment of new nodes to existing nodes with high degree, which results in a
network with scale-free properties. Whilst this model makes sense in the case of

H. Bersini and J. Carneiro (Eds.): ICARIS 2006, LNCS 4163, pp. 66–80, 2006.
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technological networks such as the Internet, it has serious flaws from a biolog-
ical perspective as it implies an mechanism by which a cell or protein decides
to attach to another cell based on a knowledge of the other’s connectivity. In
order to address this, a number of more biologically focussed models have been
proposed. For example, [18] put forward the gene-duplication model, in which
preferential attachment arises as a result of similarity between genes producing
proteins and the initial topology of the network [4]. This model has been shown
to explain biological structure in the case of gene-duplication, yet it has yet to
be generalised to other biological areas, for example the idiotypic network pro-
posed by Jerne in [12]. In response to this, [13,4] propose a more generalised
growth model which can be extended to a number of different biological net-
works, yet retains the important property that it makes no implicit assumption
of preferential attachment based on current node connectivity. Using this model,
they show that under certain conditions, networks can be produced that have
scale-free properties; however, these conditions are reminiscent of those used in
a gene-duplication network in which there is an endogenous production of new
nodes. The results do not extend to networks such as the idiotypic immune net-
work in which there is an exogenous production of new cells (in the immune case
from the bone-marrow).

Yet, idiotypic networks may play a crucial role in advancing our understanding
of the natural immune system. For example, they have been postulated to play
a crucial role creating immunological memory [12], in preventing auto-immunity
[17], and knowledge of their architecture is critical for describing population dy-
namics of B-lymphocytes and antibodies [5]. Thus they have received a great deal
of attention from the immunological community, e.g [17]. At the other extreme,
the properties that are integral to the idiotypic network have also captured the
attention of engineers and computer scientists; thus we see them deployed in
applications ranging from robotics [19] to data-classification [14]. Attempts to
unify understanding and thus progress both disciplines have been made by [3,10],
whose work has gradually begun to build a picture of the properties of idiotypic
networks. In this paper, we extend a previous analysis concerning the dynamics
of emergent idiotypic networks and their resulting properties with an in-depth
analysis of the physical properties of the underlying network itself. We attempt
to map our observations to those that have been made in theoretical immunology
and other studies of biological networks in the hope that the work can impact on
both immunological and engineering studies of the immune system. In the next
section we review some related work on growth models for idiotypic networks,
and then present our model and the experimental results derived from it.

2 Related Work

Interest in modelling idiotypic networks is not new — over a decade ago models
were proposed independently for example by [7,16] and the emergent properties
of these models analysed. These models raised interesting questions regarding
the properties of idiotypic networks, but tended to focus on explaining observed
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immunological phenomena. Over a decade later, a resurgent interest in networks
has come about in which new understanding in the area of statistical physics
has led to a greater focus on undertanding the properties of the network itself.

Thus, Brede and Behn in [5,6] focus on analysing the dynamics and architec-
ture of an idiotypic network. Their model incorporates two important principles
specific to immune networks; the first is that the dynamics and network evolution
should be driven by a continuous influx of new idiotypes from the bone marrow,
and that secondly, that idiotypes should die out if they become under or over
stimulated. Their model adopts a bit-string approach: for a bit-string of length
d, there are 2d possible antibodies (representing vertices of a hyper-cube). By
defining recognition to occur between vertices which are either perfectly com-
plementary or have only n matching bits (’n-mismatch’), the network can be
represented as a graph in which some vertices are connected (e.g a “1-mismatch”
rule on a hypercube of dimension 3 has all space and side-diagonals connected).
Growth dynamics are simulated by simply selecting at random a set of vertices of
the hypercube and occupying them. The neighbourhood of each occupied vertex
is then checked, and any vertex having a degree less than tl or greater than tu
is deleted. The upper bound tu prevents unlimited growth of the network in the
first instance and can lead to instantaneous removal of nodes, whilst the lower
bound tl is responsible for maintaining a memory of perturbations which can
last over many iterations. They obtain results which show that their model pro-
duces a non-trivial seemingly realistic network topology. Although the model is
appealing in it’s simplicity it has some drawbacks from a biological perspective
in that it makes no reference to the concentration of cells, and instead appeals
to cell degree as the deciding factor in determining whether cells survive or not.

On the other hand, Bersini et al [4] propose a general model that fits well
with the biological perspective and has the added advantage of being generalis-
able to either exogenous production of nodes (such as the immune network) or
endogenous production (as in protein networks) and to both homogeneous and
heterogeneous networks. The model again utilises a binary shape-space. Bit-
strings are able to bind if the Hamming distance between two strings is greater
than some threshold t. The key features of the model are that: each node has a
different identity based on it’s physical properties which define it’s type and an
associated concentration that changes over time; the model is type-based rather
than instance-based as in technological or social networks; nodes connect based
on mutual attractiveness (affinity); the nodes that are added to the network de-
pend on the dynamics of the existing network. At each iteration of the model,
new instances of types are introduced to the network, and they are added only
if they can bind to other instances in the network — links only appear if the
types of the two instances had not previously been bound. This essentially forms
a biological interpretation of the preferential attachment rules proposed in [1].
Using this model, they obtain results which suggest that scale-free distributions
are only obtained using an endogenous production scheme and that exogenous
production models as observed in the immune system can lead to in the worst
case, an exponential distribution. However, their model is incomplete in the sense
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that it only contains birth-dynamics, i.e. there is no mechanism by which nodes
may disappear due to environmental constraints, and therefore nodes can in-
crease in concentration indefinitely. This is clearly unrealistic from a biological
perspective, and likely impacts on the type of networks we can expect to obtain
from such a model.

Therefore, in this paper, we present an analysis of an alternative model which
in keeping with biologically motivated spirit of [4] is type-based and depends on
node concentration, yet includes complete birth and death dynamics as in [5]. We
investigate whether the inclusion of a complete dynamics can lead to a scale-free
distribution in a network with an exogenous production scheme. The experiments
are performed using an integer-value shape-space. Much of the previous work in
this area has made use of binary shape-space — this partly has historical roots,
dating back to the first ideas in AIS proposed by Farmer [8], but also has some
advantages in the richness of matching-rules it facilitates. However, using an
integer shape-space only provides an interesting comparison to existing work
with binary shape-spaces, but has advantages from the engineering perspective
in that it lends itself more readily to the kind of real-world engineering problems
we wish to address with AIS technology, and in that the networks can be readily
visualised. The next section presents the model used and discusses the differences
between it and the general model proposed in [4].

3 Immunological Model

The model used in this paper has previously been presented in [2,10,9] and is
shown in outline below.

1. Generate at random a new antibody cell at location (x,y) with radius r and
add to the simulation with concentration 10.

2. Calculate the stimulation SAb of each antibody cell present according to
equation 1

3. For each cell present, if L < SAb < U , increase the concentration of the cell
by 1, otherwise decrease it by 1, where L and U represent a lower and upper
stimulation limit, respectively.

4. Remove any cells whose concentration has reached 0.
5. Repeat

SAb =
∑

antigens A

Ac(r − ||A − Ab′||) +
∑

cells E

Ec(r − ||E − Ab′||) (1)

In equation 1, Ab′ represents the complementary position of an antibody Ab.
Ac/Ec represents the concentration of the antigen A or antibody E, and r rep-
resents the recognition radius of the cell. Although the generic equation given
covers the most general case in which a simulation can contain both antibodies
and antigens, in all simulations reported in this paper, no antigens are added,
therefore only idiotypic interactions between cells are considered.
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A key ingredient of any network growth model is defining the allowed inter-
actions between nodes in the network; in graph terminology, we can consider
any two nodes which interact to be linked or connected. In popular immuno-
logical terminology, two nodes which interact are said to recognise each other.
In the model described in this paper, a node defined by integer-coordinates in
2-dimensions can recognise any other nodes which lie in a circular region of ra-
dius r centered on a point which is complementary to the node, i.e. at a point
(X − x, Y − y), where X and Y are the dimensions of the grid, and (x, y) the
coordinates of the cell. In the growth model proposed by Bersini et al, a node
defined by a binary string recognises another node if the Hamming distance be-
tween the two nodes is greater than some threshold T . Thus r and T in the
respective models play identical roles in limiting number of potential partners
of any given node. If r or T is fixed, then the network is homogeneous; a hetero-
geneous network on the other hand can be produced if each node (type) has it’s
own associated value of r, T (and r, T is drawn from some pre-defined range).
This model contains many similarities to that proposed in [4] but differs in the
following respects:

– In the model proposed above, at least one node is added to the simulation
at each step, regardless of whether of not the node has an affinity with
other nodes in the network. In [4,13], only nodes that can connect with
another node are added. Nodes are added with concentration 10; if they
are not able to make any connections within the following 10 iterations,
their concentration will be reduced to 0 and they will be removed from the
system. They have therefore a small window of opportunity in order to make
the connections necessary to survive.

– When a node is added, all existing nodes in the network are checked to
determine whether they lie in the recognition region of the new node; on the
other hand, in [4], potential partners are restricted to only those that are
selected in a trial of size P, in which nodes are selected with a probability
related to their concentration.

– In both models, the concentration of a node is increased by 1 if it receives
sufficient stimulation; in the model proposed in this paper, stimulation is
calculated via equation 1 and must reach a minimum threshold of low. In
Bersini’s model, connecting to one other partner is sufficient to cause the
concentration to increase.

– If the stimulation exceeds a pre-defined value U , then the concentration
of the node decreases. This models the suppressive effects observed in real
immune-networks. Nodes whose concentration reaches 0 are removed from
the network, therefore the network incorporates a death mechanism, unlike
that of [4].

– In [4], the simulation is terminated when the number of types added to the
network reaches 1000. No limit on the possible number of types is imposed
during the simulation described in this paper.
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4 Experimental Parameters

All experiments reported are derived from simulations on a grid 100x100, giving
a total of 10,000 possible types. This is of the same order of magnitude as those
experiments reported in [4] in which types were represented by a binary string
of length 13, resulting in 213=8192 possible types. All experiments used a lower
threshold of 1000, the maximum upper threshold is stated in each experiment,
and took values U ∈ 10, 000, 100, 000, 200, 000. Connectivity is determined by the
radius of a cell r — the minimum radius allowed in heterogeneous experiments
is 10 which has been shown in previous work to be the percolation value, i.e.
the minimum radius at which a network is able to spring into existence. The
maximum radius is limited to 15 in heterogenous experiments, and is fixed at
15 in homogeneous experiments. Again, this value has been shown in previous
work to give interesting network behaviour. r = 15 allows a maximum of 708
potential partners; this compares to the maximum number of partners in [4] of
378, obtained by using a threshold of 9. At the lower radius limit of 10, there
a 316 potential partners. Due to lack of space, all experiment results obtained
cannot be shown here — typical results are presented to illustrate trends, and
more detailed results are expected to be presented in a forthcoming publication.
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Fig. 1. Number of cells against time plotted for homogeneous and heterogeneous net-
works for values of U ∈ 10K, 100K and 200K. All experiments are run using the same
seed value.

5 Experimental Results

In this section, we present results obtained from running simulations of the
model over 10,000 iterations. The growth model is clearly dynamic, therefore,
the network obtained at iteration 10,000 is merely a snap-shot of the network at
some moment in time, and it is unrealistic to assume that all networks will be
in the same state at the same moment in time. Therefore, where it makes sense,
results presented are averages over a number of runs of the simulation, other-
wise, they give a snap-shot of a particular individual run, but can be considered
representative of the general trend.
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Fig. 2. Cells in the network define tolerated and non-tolerated zones in the space.
Blank areas are tolerant to any added cells; the darker the shading, the more reactive
the region to added cells.

5.1 Overview of Emergent Network Structure

Figure 1 shows the evolution of two networks using a homogeneous and het-
erogeneous growth model. In both cases following a rapid growth period, the
networks rapidly stabilize to a relatively constant size. For the three values of
upper limit U investigated, the heterogeneous growth model tends to produce
larger networks. Previous work with homogeneous networks in [10,9] showed
that the resultant emergent networks segregate the 2D space into a number of
regions which define tolerant and non-tolerant regions of the space (without any
need to pre-label cells as a particular type). The results obtained here with a
heterogeneous growth model concur exactly with the homogeneous case. In both
models, visualisation of the networks in the 2D space shows that cells that are
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sustained by the network form sharp line-boundaries which separate the space
into tolerant and non-tolerant regions. Figure 2 shows new evidence that within
these non-tolerant or reactive regions, the tolerance varies quite widely; in fig-
ure 2, the darker the shading, the more reactive the spot. Blank (white) regions
are those in which any cell is tolerated. Highly intolerant regions are created
when the recognition regions of a number of cells overlap, thus providing high
stimulation to a cell. It is interesting to observe that the heterogeneous and
homogeneous approaches result in markedly different different divisions of the
space. Furthermore, increasing the upper-limit is expected to lead to thicker
boundaries between zones (see [10]) — however,figure 2 shows that an entirely
different pattern of reactivity is observed at the upper limit U is increased from
10, 000 to 200, 000.

5.2 Network Properties

Table 1 compares the physical properties of the networks evolved over 10,000 iter-
ations for various values of U , in both the homogeneous and heterogeneous cases.
These results show average values obtained using 100 different seed values (with
the same set of seeds used for homogeneous and heterogeneous experiments).
Firstly, as previously shown in figure 1, the size of the networks increases as U
increases, and as we switch from a homogeneous birth dynamics to a heteroge-
neous dynamics. The maximum and average degree increase with increasing U ,
as does the cluster coefficient. A heterogeneous model tends to lead to networks
with lower clustering coefficient and lower average degree than a homogeneous
model for any given U . All differences are statistically significant.

Table 1. Physical properties of homogeneous/heterogeneous networks obtained after
10,000 iterations from the same seed value

homo hetero
10,000 100,000 200,000 10,000 100,000 200,000

Number of Nodes 167.8 357.6 786.5 326.9 986.7 1286.2
Max Degree 29.4 58.0 121.2 37.7 117.9 165.6

Average Degree 4.7 7.9 14.3 3.7 8.9 12.5
Clustering Coefficient 0.022 0.023 0.027 0.016 0.016 0.017

Although the maximum degree increases with U , due to cells being able to
achieve a higher stimulation from multiple connections before being penalised,
figure 3 also clearly shows that the the maximum degree fluctuates up and down;
this is just a consequence of the concentration rule; the concentration of the cell
with maximum degree with be gradually reduced to zero due the high stimulation
it will inevitably receive at which point it is removed from the system. Following
this, a eventually a new cell will likely take its place and begin to acquire new
connections; the cycle will then repeat.
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Fig. 3. The graphs show of maximum cell degree vs time and average cell degree vs
time for homogeneous and heterogeneous networks for values of u ∈ 10K, 100K and
200K. All experiments are run using the same seed value. U = 100, 000 is omitted from
the maximum degree graph for clarity — points are joined by lines in these graphs to
indicate the trend.

5.3 Clustering Coefficient

A clear indication that a network deviates from that of a random graph with an
equivalent number of vertices and edges can be obtained by examining the clus-
tering coefficient of a network, which is expected to differ by a factor of order n
(where n is the number of nodes) [15]. It has been observed experimentally that bi-
ological networks have high cluster coefficient. However, table 1 shows that we find
the clustering coefficients of the networks obtained with our model to be low in all
cases with no obvious trend as either U is increased or the network is evolved with
either heterogeneous or homogeneous types. This is not unexpected — due to the
complementary affinity function used in the 2D space, a large number of cells are
physically unable to form clusters (i.e. if A recognises B, and B recognises C, then
C cannot recognise A for the majority of (x, y) coordinates. On the other hand,
some clustering does occur; the cluster coefficients are markedly higher than those
found by [4] which produced clustering coefficients of the order < 10−5.

5.4 Degree Distribution

Figure 3 provides evidence that natural hubs do exist in the network: the left-
hand plot shows that very high levels of connectivity are achieved by a few cells
in the network in comparison to the average degree of the network cells shown in
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the right-hand plot of figure 3, which for all experiments stabilises to a low value.
One consequence of the growth model which includes death dynamics however is
that these hubs are transient, as observed by the spiking nature of the left-hand
plot of maximum degree vs iterations. The existence of hubs at all however is
contrary to the results found in [4] using an exogenous growth model without
death dynamics.
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Fig. 4. The graphs show the cumulative degree distribution P(k)for homogeneous and
heterogeneous networks for values of u ∈ 10K, 100K, and200K. Distributions were
derived by taking at snapshot of the network at the instant when the maximum degree
was observed.

An understanding of the degree distribution in a graph can be obtained by
plotting the cumulative distribution function P (k) =

∑∞
k′=k pk′ , where pk is

the probability that a randomly chosen vertex will have degree k, and therefore
Pk the probability that the degree is greater than or equal to k. In a random
graph, a binomial distribution of node degrees is observed; in real-world net-
works, and particularly biological networks, a power-law or scale-free distribu-
tion is observed. This shows up as a power-law in the cumulative distribution,
with Pk ≈ k−(α−1), and is therefore easy to spot experimentally by plotting the
cumulative distributions on logarithmic scales. This is given for both homoge-
neous and heterogeneous networks in figure 4. These appear to show a truncated
power-law distribution in the tails of the graphs, particularly as U is increased,
though the distributions deviate from this law at small degree (or possibly two
separate power-laws contribute). Again, this is contradictory to the results of [4]
which show an exponential degree distribution for their exogenous production
model.

[4] found that hubs do occur when an endogenous birth-dynamics is used, due
to nodes of high concentration preferentially attaching to new nodes, in a model
where “the rich get richer”. The results we present however suggest that hubs do
exist — yet there is no preferential attachment to nodes of high degree (as in the
Barabasi et al’s model, or to nodes of high concentration as in [4]. Figure 5 plots
the relationship between concentration and degree in Bersini model. This shows
an inverse correlation between degree and concentration, which is in fact opposite
to that presented in [4] using the endogenous production dynamics. Again, the
explanation lies partly in equation 1 — nodes with high degree receive a high
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stimulation, due to the contribution from each node they are connected to; this
drives the concentration down at each iteration as SAb quickly rises above U ,
ultimately resulting in the node being removed from the network. (The rise and
fall of the graphs of maximum degree vs iterations shown in figure 3 has already
been noted).

 1
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Fig. 5. Correlation between average concentration and degree, averaged over 10,000
iterations of network evolution. Note the log/log scale.

5.5 Topology of Networks

Results presented in previous work e.g [10] provided a visual interpretation of the
layout in 2D shape-space of the network of cells that are sustained by the growth
model presented here. Further investigation of the topology of the network itself
can be obtained by considering the cells of the network as nodes in a graph, with
edges connecting pairs of nodes (a, b) if a cell b lies within the complementary
region of the cell a. Note that as the recognition function is symmetrical in
this case (circular), the links are undirected. Figure 6 shows the topological
arrangement of two example networks obtained from the same seed under the
homogeneous and heterogeneous production model. Vertices are labelled with the
iteration at which the node was “born”. Note that the most highly connected
nodes were generally “born” within the penultimate few hundred iterations of the
simulation. This is inevitable due to the transient nature of the hubs discussed
above.

Brede and Behn discuss the requirements of the topological structure of an
idiotypic network in [5]. They state that the networks necessarily must realise
a trade-off between containing a large number of small components (in order to
retain a memory of previously encountered antigen) which requires a low con-
nectivity, but at the same time reflect the fact that a large number of antibodies
must be able to detect many different types of antigen, therefore resulting in a
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Fig. 6. Topological representation of networks. The upper plot and lower plots re-
spectively shows the heterogeneous and homogeneous networks obtained after 10,000
iterations with an upper concentration limit of 10,000.
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high connectivity. Their model suggests that above the percolation transition,
the network consists of on a large connected cluster (the central part of the id-
iotypic network) with a number of weakly connected constituents, and co-exists
with a number of small isolated clusters. Figure 6 shows some similarities to this
view; in the homogeneous case (lower graph), the network is disconnected and
it consists of two isolated clusters. The upper graph showing a heterogeneous
network consists of one large cluster which clearly has a highly connected central
part weakly connected to a number of smaller clusters. In addition, from a purely
visual inspection, the network appears to shows sign of being disassortative, i.e.
that nodes with high degree are connected preferentially with nodes with low
degree (note several nodes in the lower diagram connected to a large number
of nodes which have degree 1). This is a trait which is frequently observed in
topological analysis of biological networks (e.g for protein-protein interactions
in yeast [11]).

6 Conclusions

An in-depth analysis of a growth model for an idiotypic network and the resultant
architecture has been presented, and provides an addition to existing literature
in building a picture of how an idiotypic network might emerge and function.
Despite the simplicity of the model, we find networks which are in accordance
with biology; both homogeneous and heterogenous network models stabilise to
a relatively constant size following an initial growth period, and do not either
collapse or expand indefinitely. Although the model is simplistic compared to
those proposed a decade ago, the topologies of the resultant networks at least
contain glimpses of those features we observe from immunological studies —
in heterogeneous networks we observe the formation of a large cluster with a
number of weakly connected constituents, and the networks show signs of being
disassortative. However, more work is needed before definite conclusions can
be made in relation to this, particularly in the light of the important role the
network topology may play in influencing immunological memory.

Surprisingly, we find some results which contradict the observations made
by [4] using an exogenous production model. In particular, our model suggests
that hubs can emerge, although they are clearly transient, and that a power-
law degree-distribution emerges at least over some range of degrees, even if it is
somewhat truncated. The hubs do not arise through a preferential attachment
mechanism related to the degree of a node as in the growth model proposed by [1].
However, neither can they be explained through a positive feedback mechanism
which rewards nodes with high concentration as in the endogenous production
model of [4,13]. It seems likely that the identity of the hubs is in part a lucky acci-
dent of the placing of the first few random nodes in the simulation, which sets up
the environmental conditions for nodes to exist at certain points in the shape-
space where they are able to maintain a balance between becoming over and
under stimulated. However, the role that concentration plays needs further inves-
tigation, to explain the relationships observed between degree and concentration,
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and the lack of correlation between degree and clustering coefficient. It is hoped
to shed further light on this matter in a publication in the near future.
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Abstract. We investigate a minimalistic model of the idiotypic network
of B-lymphocytes where idiotypes are represented by bitstrings encod-
ing the nodes of a network. A node is occupied if a lymphocyte clone
of the corresponding idiotype exists at the given moment, otherwise it
is empty. There is a continuous influx of B-lymphocytes of randomly
(by mutation) generated idiotype from the bone marrow. B-lymphocytes
are stimulated to proliferate if its receptors (antibodies) are cross-linked
by complementary structures. Unstimulated lymphocytes die. Thus, the
links of the network connect nodes encoded by complementary bitstrings
allowing for a few mismatches.

The random evolution leads to a network of highly organized archi-
tecture depending on only few parameters. The nodes can be classified
into different groups with clearly distinct properties. We report on the
building principles which allow to calculate analytically characteristics
as the size and the number of links between the groups previously found
by simulations.

1 Introduction

B-Lymphocytes express on their surface receptors, i.e. antibodies which are pro-
teins with highly specific binding sites, which enable them to bind to comple-
mentary sites of an antigen, which is thus marked for further processing, e.g., for
eating by macrophages. A given B-cell has exactly one specific type (the idiotype)
of antibody. When stimulated, i.e. crosslinked by complementary structures,
they proliferate and, after a few cell cycles, differentiate into plasma cells and
memory cells, the former secreting large amounts of the useful antibodies. Thus,
useful clones survive, while others, lacking stimulation, die [1].

B-lymphocytes are capable of mutual interaction if their receptors have com-
plementary specifity. Hence, the entirety of the B-lymphocyte system forms a
functional network, with nodes representing the idiotypes and links between
complementary idiotypes. This is the central idea behind the concept of idio-
typic network presented in 1974 by Jerne [2]. Jerne’s idea got an immediate en-
thusiastic resonance. B-lymphocytes of a given idiotype and their anti-idiotypic
counterparts have been experimentally identified. However, the search for deeper
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network structures was not really successful. Parallel with the rapid success of
molecular immunobiology the initial enthusiasm of experimentally working im-
munologists decayed. Today there is a renewed interest in idiotypic interactions,
for example in the context of autoimmune diseases [3,4]. The progress in ex-
perimental methods seems to make a new generation of experiments feasible.
An excellent review and a thorough discussion of the historical development of
immunological paradigms has been given in [5], cf. also [6].

Idiotypic networks stayed always attractive for theoretical biologists interested
in the systems behaviour, but they attracted also the interest of theoretical
physicists. Also computer scientists are interested in the concepts that living
organisms have developed to fight against foreign invaders and develop artificial
immune systems.

The estimated size of the potential idiotypic repertoire of men is of truly
macroscopic order 1012, the expressed repertoire is of order 108 [7,8]. Interac-
tions between B-cells of complementary idiotype are genuinely nonlinear. Thus,
modeling idiotypic networks is an inviting playground for statistical physics,
nonlinear dynamics, and complex systems. More generally, networks, especially
random and randomly growing networks, with applications in a plethora of dif-
ferent, multidisciplinary fields [9,10,11] experience rapidly increasing interest in
the community of statistical physicists.

A minimalistic model of the idiotypic network was proposed in [12] where
idiotypes are represented by bitstrings which can interact with complementary
bitstrings allowing for a few mismatches [13]. In the model, an idiotype popula-
tion may be present or absent.

For survival it needs stimulation by sufficiently many complementary idio-
types, but becomes extinct if too many complementary idiotypes are present.
The dynamics is driven by the influx of new idiotypes generated by mutations
in the bone marrow.

The model has a minimal number of parameters, namely the length of the
bitchain, the allowed number of mismatches, upper and lower thresholds for
stimulation, and the influx of new idiotypes. This allows us to also derive some
analytical results. However, unrealistic features, such as the extinction of a clone
within one time step, are the price of simplicity.

A first study for one and two allowed mismatches was presented in [12]. For
typical parameter settings a random evolution towards a highly nontrivial com-
plex functional architecture of the emerging network was observed. To character-
ize this architecture the nodes can be classified into different groups with clearly
distinct properties. They include densely connected core groups and peripheral
groups of isolated nodes, resembling the notion of central and peripheral part of
the biological network [14,15].

The potential idiotypic network consisting of all idiotypes an organism is
able to generate and the links connecting complementary idiotypes allowing a
few mismatches is modeled as in [12] by an undirected base graph G = (V , E).
Each idiotype v ∈ V in the network is characterised by a bitstring of length
d: bdbd−1 · · · b1 , with bi ∈ {0, 1} for all i ∈ {1, 2, . . . , d}. For every pair of
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vertices the degree of complementarity is evaluated: If the Hamming distance dH

between the bitstrings of two vertices v, w ∈ V equals the length of the bitstring
d, there is a link l = {v, w} representing a perfect match, if dH(v, w) = d − 1,
we call it a one-mismatch link, etc. Allowing m mismatches, the base graph
consisting of all bitstrings of length d and the allowed links is denoted by G

(m)
d .

The expressed idiotypic network is only a fraction of the potential network,
the nodes of the expressed idiotypes and their links are a subgraph of G

(m)
d .

Driven by the random influx of new idiotypes the network evolves towards
a stationary state of nontrivial architecture. Crucial for that is that beside the
occupation of previously empty nodes, occupied nodes can become empty if
linked with too many or too few nodes of complementary idiotype. To be specific,
the rules for (parallel) update are

(i) Choose I unoccupied sites (holes) randomly and set them occupied. They
represent the influx of new idiotypes from the bone marrow.

(ii) Count the number of occupied vertices n(∂v) in the neighborhood of every
vertex v ∈ G. If n(∂v) is outside the window of lower and upper threshold
(tl, tu) , the vertex v will be set empty.

(iii) Iterate.

A similar model was proposed by Stewart and Varela [16], who also apply
a window update rule to simulate the internal dynamics and a 0–1 clone pop-
ulation. However, their shape space differs from our model: While we consider
a discrete d-dimensional hypercubic shape space, in [16,17] the complementary
idiotypes live on different sheets of a 2D continuous shape space.

In the following section we describe the typical course of the random evolution
of the network as found in extensive numerical simulations. The evolution tends
toward a steady state of highly organized architecture. We describe how this
architecture can be characterized classifying nodes into different groups with
clearly distinct statistical properties and how these groups are linked together.
In Sect. 3 we show that the empirical findings can be explained analytically once
the building principles are understood. In the final section concluding remarks
and an outlook are given.

2 Random Evolution of the Network

We performed simulations on the basegraph G
(2)
12 for (tl, tu) = (1, 10) for different

values of I starting with an empty base graph. The base graph contains 4096
nodes each of which has 79 links to other nodes. In the first step only those
nodes survive which have at least one occupied neighbor (having more than 10
occupied neighbors is unlikely in the beginning). The surviving nodes represent
seeds to which other occupied nodes easily can attach. That leads to a rapid
growing towards a giant cluster. Parallel to that many stable holes are created,
i.e. nodes with the number of occupied neighbors above the upper threshold.

Going through a state with one giant cluster determines –in a sense– the
pattern towards which the system will evolve.



84 H. Schmidtchen and U. Behn

Depending on the influx I we observe with varying probability either a decay
of the giant cluster into numerous small identical clusters or the formation of
one large cluster accompanied by many isolated occupied nodes.

In any case, the system reaches a stationary state in which the influx of new
idiotypes and the loss of old ones stay well-balanced, cf. Fig. 1. The stationary
states may have a complex architecture, in which we can classify the nodes into
groups with clearly distinct statistical characteristics.
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Fig. 1. The time series of the number of occupied vertices nT (G), the size of the
currently largest cluster |Cmax

T |, the average cluster size 〈|C|〉CT , and the number of
stable holes h∗

T (G) on a base graph G
(2)
12 with tl =1 , tu =10 and I =110

The empty base graph is a highly symmetric object. Due to the random influx
the symmetry is broken and the system falls into a network configuration of lower
symmetry depending on the individual history. Increasing the influx may lead
to transitions between different patterns where the formation of intermediate
unstable giant clusters play a role. For a more detailed account of the transient
behavior and the transitions see [12].

In the simulations we measured the behavior of the whole system, as well as
the time averages of local quantities characterizing every single node. In this way
groups of nodes can be distinguished with clearly distinct properties. Figure 2
shows the time average of the number of occupied neighbours of every node as
a function of the influx. We find distinct regions in dependence of the influx
I. For small and moderate influx a clear group structure is visible. Considering
also other characteristics, e.g. the mean life time, we can describe them as static
(I < 90) and dynamic (90 ≤ I < 260). For higher influx the clear distinction
of groups becomes impossible, we call these patters transient (260 ≤ I), and
random (350 � I). Static patterns have groups of occupied nodes which have
a high mean life time. Many of the other groups are stable holes or sparsely
occupied vertices. In dynamic patterns there still are some stable hole groups,
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however, we do not find any groups of permanently occupied nodes. The mean life
time generally is small, and the graph of occupied nodes changes permanently.
While in static and dynamic patterns all vertices remain in their groups, for
high influx the patterns become transient, i.e. groups dissolve and rearrange
themselves. For very high influxes the dynamics is entirely random.

Fig. 2. We measured the time averages of the number of occupied neighbors of each
vertex. The graph shows a top view on histograms giving the frequency of vertices
with a given average number of occupied neighbors for different values of the main
parameter I . Regimes of different temporal behavior are indicated.

3 Building Principles

3.1 Determinant Bits and Pattern Module of the 2-Cluster Patterns

For moderate influx, I = 10, one can distinguish, looking at local statistical
characteristics, three groups of nodes, cf. Table 1.

We find a group of frequently occupied nodes (S1) with a mean occupation
〈n(v)〉S1 close to 1 and a high mean life time 〈τ(v)〉S1 , a group of stable holes
(S3) never being occupied, and a group of potential hubs (S2) which are rarely

Table 1. Characterization of groups by local quantities for the case I = 10

S1 S2 S3

occupied neighbors 〈n(∂v)〉Si 1.16 10.96 53.26
mean life time 〈τ (v)〉Si 4699 3 0
mean occupation 〈n(v)〉Si 0.95 0.01 0.00
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occupied. However, if occupied, they function as hubs linking together up to tu
2-clusters. The sizes of the groups are |S1| = |S2|/2 = |S3| . For illustration see
Fig. 3.

Fig. 3. A typical pattern found for I = 10, and similarly for I = 60. The occupied
vertices form 2-clusters, some of which are interlinked via hubs. The vertices are labeled
with the decimal expression of their bitstring. The sum of the indices within a 2-cluster
is always 6207 in this 2-cluster configuration. The determinant bit positions are 7 and
12. Figure produced using yEd [18].

Looking at the vertex indices iv in decimal representation we made a sur-
prising observation: The sum of the two indices in a 2-cluster is constant in the
whole graph.

A look at the bitstrings of the nodes of all 2-clusters revealed, that they are
identical in exactly two bits, say at position k and l . The remaining d−2 bit
positions assume all 2d−2 possible values. Inside a cluster the two bitstrings are
complementary in these positions. Thus, the 2-clusters have a two-mismatch link
and we write symbolically

· · · bk · · · bl · · · connects to · · ·bk· · ·bl· · · , (1)

where the bar denotes the bit inversion.
The other groups, S2 and S3, have similar structural properties. The bitstrings

of all stable holes are also equal in the same two bit positions k and l . However,
they are inverse to bk and bl of the occupied vertices. Potential hubs have exactly
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one inverse and one equal bit in these positions. As only these two bits play the
crucial role of determining the pattern, they shall be called determinant bits. In
summary we have

occupied vertices S1 · · · bk · · · bl · · ·
potential hubs S2

· · · bk · · · bl · · ·
· · · bk · · · bl · · ·

stable holes S3 · · · bk · · · bl · · ·
. (2)

These very few principles allow to explain all observations made in the sim-
ulations. We can construct a perfect 2-cluster pattern, a configuration in which
all nodes of group S1 are occupied and the others remain empty. It is perfect
in the sense that there are no defects but also no hubs. Such a configuration is
22 × (d2)-fold degenerated where the first factor represents the choice of the two
determinant bits, and the second factor gives the number of possible positions
of these bits in the bitstring of length d .

We further can compute the number of occupied neighbors n(∂v) of a vertex
v of any group. Since all nodes of S1 are occupied in the perfect pattern, n(∂v)
is given by the number of links between v and the other elements of S1. A link
between two nodes exists if their bitstrings are complementary except for up to
two mismatches. If v ∈ S1 , it has two bits in common with all other vertices in
S1, namely bk and bl . Thus, all remaining bits must be exactly complementary.
There is only one vertex w ∈ S1, w �= v, which obeys the constraints. If v ∈ S2
or v ∈ S3, there is one pre-determined mismatch or none, respectively. The
remaining mismatches can be distributed among the d−2 non-determinant bits.
Thus

n(∂v) =
1∑

j=0

(
d − 2

j

)
∀ v ∈ S2 and n(∂v) = 11 for d = 12 , (3)

n(∂v) =
2∑

j=0

(
d − 2

j

)
∀ v ∈ S3 and n(∂v) = 56 for d = 12 , (4)

which is in good agreement with the simulations, cf. Table 1.
This regularity encouraged us to the following concept. Considering the two

determinant bits as coordinates of a two-dimensional space, they will define the
corners of a two-dimensional hypercube, which is called a pattern module.

The corner with coordinates (bk, bl) represents an occupied vertex, the op-
posite corner (bk, bl) is a stable hole, and the neighboring corners of (bk, bl)
are potential hubs. The module is the building block for the entire regular con-
figuration which can be understood as consisting of 2d−2 congruently occupied
‘parallel worlds’. Any choice of the two determining bits is of course possible,
all corresponding patterns are equivalent, the 2-cluster pattern is 22 × (d2)-fold
degenerated. The individual history (the realization of the random influx) selects
the determining bits. Thus the degeneracy is lifted, a symmetry breaking has
occurred.
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Figure 4 illustrates the concept of pattern modules in the smallest possible
two-mismatch graph G

(2)
3 .

010

vertices

110 111

101

001000

potential

stable
holes

occupied

100

011
hubs

Fig. 4. The complete graph G
(2)
3 with a 2-cluster configuration. On G

(2)
3 every vertex

is connected to any other. We find two congruently occupied two-dimensional modules
(solid links), each consisting of one occupied vertex (black, · 10), two potential hubs
(gray, · 00 and · 11) and one stable hole (white, · 01). The upper threshold has to be
adjusted to tu = 1.

The 2-cluster pattern resembles in a sense the structures found in [16]. There,
chains of complementary idiotypes emerge with a fixed distance, which amounts
to the preferred occurrence of idiotype–anti-idiotype pairs with a given mis-
match. In the ideal case our 2-cluster pattern consists of an ordered array of
idiotype–anti-idiotype pairs with the maximal number of mismatches. However,
this is only the simplest of a multitude of possible patterns, which occur for
larger values of the main control parameter, the influx I. As described in the
following, all of these can be explained in a similar way.

3.2 Generalizations and Combinatorics

Many results for 2-clustered patterns on the G
(2)
12 base graph can be generalized

to other choices of d and m. For instance, the 2-cluster pattern on 1-mismatch
graphs described in [12] can be explained in a similar way. For base graphs G

(m)
d

we proved: We can construct 2-cluster patterns by means of pattern modules with
exactly one occupied corner. The dimension of the pattern module dM equals the
number of allowed mismatches m, the number of qualitatively distinguishable
groups is dM +1, and the size of group Si is 2d−dM

(
dM

i−1

)
. A 2-cluster pattern

can emerge if the lower threshold is tl = 1 and the upper threshold obeys
1 ≤ tu ≤ d − dM .

In the static pattern regime there exists a dominating 8-cluster pattern, in
which the clusters of occupied vertices appear as cubes. Furthermore, 24- and
30-cluster patterns appear, cf. Fig. 5.
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Fig. 5. The regular 30-cluster found for I = 30. It has the shape of a 6-dimensional
hypercube projected into the plane. Figure produced using yEd [18].

All of these patterns can be explained considering modules with more than
two determinant bits. As explained above, the dimension dM of the module is
just the number of determinant bits. Many results for the 2-cluster pattern also
hold for the patterns of higher complexity. Given a module dimension dM the
number of groups, and their (relative) sizes can be calculated and arranged as
in Pascal’s triangle, cf. Table 2.

Table 2. Pattern modules in G
(2)
12

dM |Si|/2d−dM with i ∈ {1, . . . , dM +1} observed patterns in G
(2)
12

0 1
1 1 1
2 1 2 1 2-cluster
3 1 3 3 1 24-cluster
4 1 4 6 4 1 8-cluster
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1 30-cluster

The third column shows examples of patterns that are really observed in
simulations on G

(2)
12 and that can be explained by means of the pattern modules of

the respective dimension. The bold numbers indicate groups which are occupied
in these example patterns. For instance, the 2-cluster pattern described above
has three groups: one occupied group, a group of potential hubs, which is twice
as large, and a group of stable holes.

The possible links between vertices of different groups are –of course– con-
strained by the mismatch rule.



90 H. Schmidtchen and U. Behn

We find that the bitstrings of a vertex vi ∈ Si always deviates in exactly i−1
determinant bits from those of a vertex v1 ∈ S1. When calculating the number
of links of vertex vi to vertices vj ∈ Sj we have to take into account that the
bitstring of vj also deviate in j−1 determinant bit positions from that of a v1 ∈ S1.
Among the vertices in Sj there exists a vertex vj with a minimum number of
mismatches with respect to vi. The non-determinant bits of vi and vj can be
chosen to be inverse, but for the determinant bits there are constraints. The
lowest number of mismatches between vi and vj can be achieved if we arrange
without loss of generality all deviating bits of vi to the left and all deviating bits
of vj to the right:

vi :
vj :

bk1 bk2 . . . bki−1

bk1 bk2 . . . . . .︸ ︷︷ ︸
i−1 bits

bki . . . . . .
. . . . . . bkdM −j+1︸ ︷︷ ︸

mmin
ij :=dM−i−j+2 bits

. . . . . . bkdM

bkdM −j+2 . . . bkdM︸ ︷︷ ︸
j−1 bits

If mmin
ij <0, the deviating bits will overlap in the arrangement, and if mmin

ij >0,
there will be a gap. Considering all allowed arrangements of bits we can thus
calculate the number of links of a given vertex vi ∈ Si to vertices in Sj by
elementary combinatorics:

k′∑
k=0

l′∑
l=0

(
i − 1

k + max(0, mmin
ij )

)(
dM − i + 1

k + max(0,−mmin
ij )

)(
d − dM

l

)
, (5)

where k′ = �(m−|mmin
ij |)/2�, and l′ = m−|mmin

ij |−2k. Details of the calculation
are given in [19] and in a forthcoming publication.

3.3 The Six-Group Pattern

A remarkable pattern found empirically in [12] on G
(2)
12 for I = 90 is the dynamic

pattern consisting of a six-groups, cf. Table 3.

Table 3. Characterization of the six empirical groups. Data from [12].

S1 S2 S3 S4 S5 S6

group size |Si| 1124 924 924 134 330 660
life time 〈τ (v)〉Si

0.0 3.8 5.4 10.0 18.1 35.6

We now denote the empirically found groups by S̃i to distinguish them from
the groups Si defined analyzing the pattern modules. S̃1 is the group of stable
holes, S̃2 and S̃3 are central groups, which have connections among each other,
as well as to the peripheral group S̃5 . S̃2 additionally has got links to the other
peripheral group S̃6 . The group S̃4 is somewhat special, because it is entirely
surrounded by stable holes, cf. Fig. 6. Occupied vertices of this group are sus-
tained solely by the random influx. Figure 7 shows a snapshot of the occupied
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S̃1

S̃2

S̃3S̃4

S̃5

S̃6

Fig. 6. A visualization of the six-group structure taken from [12]. The size of the boxes
corresponds to the group size. The lines show possible links between vertices of the
groups and their thickness is a measure of the number of links.

graph at some time step. We clearly see the central and the peripheral part of
the idiotypic network.

We were able to explain this sophisticated structure by means of an 11-
dimensional pattern module. From this we can derive the correct group sizes
and the observed links between the groups. Also the observation, that S̃1 and S̃4
decay into subgroups [20], can be fully understood. Table 4 gives the mapping
{Si} → {S̃j} and the derived group sizes |Si| . For example, groups S8 , S9 , S10 ,
S11 , and S12 are the subgroups of the empirical group S̃1 . Their calculated size
adds to 1124, which is exactly the statistically measured size of group S̃1 .

Table 4. The pattern module of the six groups structure

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

empirical group S4 S4 S4 S5 S6 S3 S2 S1 S1 S1 S1 S1

group size 2 22 110 330 660 924 924 660 330 110 22 2

Applying (5)we can also calculate the number of links fromagivenvertexvi ∈ S̃i

to vertices in group S̃j . The results are given in Table 5. This table is identical to
the table of measured links in [20]. The non-integer number of links of v1 ∈ S̃1 is
due to the division of S̃1 into subgroups. (They are weighted averages.)

In contrast to the static patterns that emerge for low influx I in this struc-
ture we also find perfect matches and 1-mismatch links, but they are simply
outnumbered by the 2-mismatch links.
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Fig. 7. Snapshot of the occupied graph Γ of a six-group configuration. The five different
shades of gray indicate the mean life time of the different groups Si from low (white)
to high (black) mean life time, cf. Table 3. Figure produced using yEd [18].

Table 5. The number of links from one given vertex vi ∈ Si to vertices of Sj

S1 S2 S3 S4 S5 S6

v1 0 12.3 16.4 9.4 15 25.8
v2 15 12 32 0 10 10
v3 20 32 12 0 0 15
v4 79 0 0 0 0 0
v5 51 28 0 0 0 0
v6 44 14 21 0 0 0

4 Conclusions

We considered a minimalistic model to describe the random evolution of the id-
iotypic network which is, given very few model parameters, mainly controlled by
the random influx of new idiotypes and the disappearance of not sufficiently stim-
ulated idiotypes. Numerical simulations have shown that after a transient period
a steady state is achieved. Depending on the influx and on other parameters,
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the emerging architecture can be very complex. Typically, groups of nodes can
be distinguished with clearly distinct statistical properties. These groups are
linked together in a characteristic way which leads to the found architecture.

We achieved a detailed analytical understanding of the building principles of
these very complex structures emerging during the random evolution. Modules
of remarkable regularity serve as building blocks of the complex pattern. We
can calculate for instance size and connectivity of the idiotype groups in perfect
agreement with the empirical findings based on numerical simulations [12].

For a suitable parameter setting the network consists of a central and a periph-
eral part, as proposed in [15]. The central part of the immune system is thought
to play an essential role, e.g., in the control of autoreactive clones. In this view,
the peripheral part provides the response to external antigens and keeps a local-
ized memory. An ad hoc architecture similar to the one described here was used
in [21] to investigate the role of the idiotypic network in autoimmunity.

The analytical understanding opens the possibility to consider networks of
more realistic size and to investigate their scaling behaviour, e.g. exploiting
renormalization group techniques [22]. We are optimistic that we can explain
and predict many statistical results of the six-group structure for arbitrary pa-
rameters d and m, too, if we consider the idiotypes as situated in a mean field
created by its surrounding vertices, which in turn act according to the expected
behavior of their group.

Future steps will include to check whether a similar understanding can be
reached for more realistic models. For example, we think of matching rules al-
lowing bitstrings of different lengths, of links of different weight for varying
binding affinities, of several degrees of population for each idiotype and a delay
of take-out of understimulated clones.

Furthermore, we are interested in the co-evolution of the network in the pres-
ence of self-antigens or an invading foreign antigen in terms of whether the net-
work tolerates them or rejects them, respectively. We also think about modeling
the development of the architecture during the life time of an organism.
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Abstract. A new specification of an immune network system is pro-
posed. The model works on a set of antibodies from the binary shape-
space and it is able to build a stable network and learn new patterns
as well. A set of rules based on diversity of the repertoire of patterns
which control relations of stimulation and suppression is proposed. The
model is described and the results of simple experiments with the imple-
mentation of the model without and with presentation of antigens are
presented.

1 Introduction

Ability to learn to distinguish and discriminate the self patterns from non-self
ones present in the immune systems is explained by the immune network theory
proposed by Jerne [6]. The hypothesis assumes that the system is composed of
a set of molecules, i.e. antibodies and antigens. There are also rules that con-
trol interactions between antibodies and between antibodies and antigens. The
interactions turn this set of molecules into a self regulated network which has
its own mechanisms responsible for insertion and elimination of molecules. The
rules are based on the molecules’ traits which assembled all together can be
interpreted as points in the multidimensional space where each of dimensions
represents a single trait. The result of these interactions is a continuous proces
of modification i.e. growth or depreciation of the concentration of molecules in
the organism. Depreciation of the concentration of selected antibodies or anti-
gens brings them to elimination from the system. Eliminated molecules can be
replaced by new ones and this way the system is able to rebuild itself according
to its metadynamics. For the summary of the first models based on this theory
which were developed by Farmer et al. and Varela see [3].

In recent years a set of different practical specifications of the models was
already proposed. For extended discussion on properties of immune networks
based on two types of shape-space: the multidimensional real space and the
binary space see the Bersini’s publication [2]. Our network manages binary pat-
terns and its activity is controlled by the rules that are easy to implement and of
low computational cost. However there is also a set of assumptions which differ-
entiates it from the networks presented by Bersini. In [4] Galeano et al. present

H. Bersini and J. Carneiro (Eds.): ICARIS 2006, LNCS 4163, pp. 95–108, 2006.
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a genealogical tree describing dependency relationship between the models. Our
approach would be the closest to the Hunt & Cooke branch which started from
the model proposed in 1996 [5].

In [3] a general–purpose framework of AIS is proposed where the three key
layers are distinguished: immune algorithms, affinity measures and representa-
tion. The following section describes the first and the last layer of the framework.
The proposed idiotypic network model is presented, i.e. the main loop of the pro-
cess and the rules of affinity and enmity which control the concentration of the
molecules are discussed. The formula of evaluation of new concentration levels
of the molecules is given. In Section 3 a description of the second layer of the
framework including affinity measures can be found. A set of measures is pre-
sented as well as a novel transformation operator for binary strings. Section 4
includes results of the first group of experiments where the model was tuned
and average life span of antibodies was observed. Section 5 presents the last
group of experiments where a set of five antigens was cyclically presented to the
system. The paper is concluded with a summary of the current work and plans
for further research.

2 The Idiotypic Network Model

The model represents a network which consists of a set of antibodies and rules
of relationship between them. In our specification of the model different types of
antibodies are represented as objects in a binary shape space. Each of them is
equipped with a 32-bit paratope and a 32-bit epitope, and with two numerical
attributes: a concentration and a lifetime. It is assumed that each antibody have
just one binding site therefore every object represents all the antibodies with the
same patterns of the paratope and the epitope. The quantity of a set represented
by an object is defined by the concentration attribute. It should not be allowed to
exist two or more objects with the same paratope and epitope in the population
of objects at the same time 1. The remaining two components of the object,
the two numerical attributes do not participate in binding rules. The second
attribute, the object’s lifetime allows us to observe robustness of each of the sets
of antibodies. When a new object is added to the population its lifetime is set to
zero and then it is increased at the end of every iteration of the process as far as
the object exists in the population. The concentration of a newly created object
is set to an initial value which was equal to 1 in the experiments presented below.
During the lifetime of the system the objects stimulate each other to increase or
decrease the concentration of the antibodies which they represent.

The proposed specification allows also to introduce antigens into the system.
Different types of antigens are represented by objects equipped with epitope
and two numerical attributes, i.e. the concentration and the lifetime. The ob-
jects representing antigens interact with the objects representing antibodies in
1 It is hardly likely that such a situation will take place because the total number of

possible patterns is 264. Therefore our software application did not have any special
procedures for elimination of redundant objects.
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the same manner like the antibodies interact with each other and this way the
concentration levels of antigens are also able to be modified.

For both types of objects the lifetime attribute values are just gathered during
experiments. The values of lifetime do not influence the activity of the system
but they are introduced only for easier and more thorough observation of the
system behavior.

2.1 The Main Loop of the Process

At the beginning of the experiment an initial number of objects representing
different types of antibodies is randomly generated and their attributes are set
to initial values. Then the process of life starts. The main loop models the life
of the organism. The main task of the loop is to execute the dynamics and
metadynamics of the model by updating the levels of concentrations in all the
existing objects. During the execution of the main loop some of the objects
disappear when their concentration shrinks below the minimum threshold. The
deleted objects are replaced by mutated clones of those which concentration
is high. The concentration shrinks when the object representing given type of
antibodies is suppressed by the other types. When the object is stimulated its
concentration grows but it does not grow to infinity. In our experiments the
upper limit of concentration level was set to 9999.

2.2 The Antibodies Relationships

There are rules in the system steering the levels of concentrations. They are
based on affinity between paratopes and epitopes of different types. It is im-
portant to stress that in contrast to other network models the rules depend on
the number of other types that a type interact with and they do not depend on
the concentration of those types. This is an unusual assumption because in the
existing models of the networks the concentration of antibodies plays the signifi-
cant role in suppression and activation mechanisms. However a rule promoting a
growth of diversity in the population of antibodies could stimulate the system to
build more stable nets of stimulative relations between the molecules. In such a
net a large number or even most of the relations are redundant i.e. lost of one or
two types of antibodies does not cause gaps in the chains of relations. Therefore
in the presented approach the concentration is responsible just for the lifetime
of the particular type of antibodies or antigens.

When the value of the affinity between any two objects is above the specified
level the rule is activated and the object’s concentration is modified. There are
five rules of stimulation and suppression defined. The first two rules describe
interactions between types of antibodies while the three latter are used when
objects representing types of antigens are introduced into the system. All of
them define values which the concentration will be increased or decreased by. In
addition they are not disjoint i.e. more than one of them can be satisfied simul-
taneously for one object. In that case the values from the rules are summarized
and the cumulative modification of the concentration is evaluated.
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1. For the objects representing type of antibodies there exist two kinds of rela-
tion: to recognize anybody and to be recognized by anybody. In the first case
we can say that the object B1 will recognize the object B2 if the affinity be-
tween B1 paratope and B2 epitope is above the specified threshold. In this
case B1 will be activated. In the second case – B1 will be recognized by B2
if the affinity between B1 epitope and B2 paratope is above specified thresh-
old. In this case B1 will be suppressed. The thresholds for both relations do
not need to be equal.

2. If neither the objects’s paratope nor the epitope interact with any other
object in the system (i.e. the given type of antibodies neither recognizes nor
is recognized by any other type of antibodies) it will be suppressed.

3. If the object representing type of antibodies recognizes any object repre-
senting type of antigens i.e. affinity between the antibodies’ paratope and
the antigens’ epitope is above the specified threshold the object represent-
ing types of antibodies will be activated and the object representing type of
antigens will be suppressed.

4. If the object representing type of antibodies neither is recognized by any
other type of antibodies in the system nor recognize any type of antigens the
object will be suppressed.

5. The real-world antigens try to proliferate continuously in the infected organ-
ism so for each of types of antigens a concentration growth proportional to
current level of concentration is evaluated in every iteration.

The five rules presented above require to define the affinity measure and three
thresholds. The first threshold at controls the relation of the first type when B1
recognizes B2 and causes activation of B1. The second threshold st controls the
relation of the second type when B1 is recognized by B2 and causes suppression
of B1. The last threshold t controls the relation between types of antibodies and
types of antigens.

2.3 Evaluation of a New Concentration Level

To evaluate new values of concentrations of types of antibodies and types of
antigens in the time t of the process the first step is to check current relations
between them. For each of the types of antibodies Bi the total number of other
types of antibodies which are recognized by Bi (called Ai

B2B(t)) and the total
number of types of antibodies which recognize Bi (called Si

B2B(t)) are evaluated
using the first rule. Then in case of presence of antigens the third rule is used
to evaluate the number of types of antigens which are recognized by Bi (called
AB2A(t)) and for each of the types of antigens the number of types of antibodies
which recognize them (SB2A(t)) is evaluated.

In the second step for each of Bi a change of its concentration ci(t) based
on each of the rules of interaction is evaluated. The change of concentration is
controlled by two factors: an activation factor ηa where ηa > 1, and a suppression
factor ηs where ηs < 1. There are four components of concentration change
Δci

1(t), Δci
2(t), Δci

3(t) and Δci
4(t) which come from the former four rules:
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Δci
1(t) =

{
ci(t)ηs(1 − SB2B(t)−AB2B(t)

pop size ) − ci(t) iff SB2B(t) > AB2B(t)
ci(t)ηa(1 − AB2B(t)−SB2B(t)

pop size ) − ci(t) iff SB2B(t) < AB2B(t)
,(1)

Δci
2(t) =

{
ci(t)ηs − ci(t) iff (SB2B(t) = 0) ∧ (AB2B(t) = 0)
0 otherwise , (2)

Δci
3(t) = ci(t)ηAB2A(t)

a − ci(t), (3)

Δci
4(t) =

{
ci(t)ηs − ci(t) iff (SB2B(t) = 0) ∧ (AB2A(t) = 0)
0 otherwise , (4)

In case of a model including antigens a new concentration for the objects
representing types of antigens has to be evaluated too. Since the change in the
concentration level of each type of antigens depends on its natural continuous
proliferation in the organism (5th rule) and the number of types of antibodies
which recognize the given type of antigens (3rd rule) the new concentration cj(t)
of the object representing j-th type of antigen is evaluated as follows:

cj(t + 1) = cj(t)ηpro
pop size− SB2A

pop size
(5)

where ηpro is an antigens’ proliferation factor where ηpro > 1 (in our experiments
ηpro was equal ηa).

3 Affinity Measures

The shape space model described above is still not complete because we have
not defined a relation for the shapes in the defined space yet. Binary pattern
matching problem belongs to classic and a set of different similarity or distance
functions was already proposed [1]. It is closely connected with a problem of
classification of binary patterns (see e.g. [9] for discussion). In our case it is
assumed that the significance of the bits in the patterns is the same for all the
bits. So eventually the following set of affinity measures was selected for tests [7]:
1. Russel and Rao, 2. Jaccard and Needham, 3. Kulzinski, 4. Sokal and Michener,
5. Rogers and Tanimoto, 6. Yule. They were compared with a Hamming distance
and a r -contiguous bits matching rule.

For the formal description we shall use the following definition of the binary
strings: X, Y ∈ {0, 1}N and the following reference variables:

a =
∑n

i=1 ξi, ξi =
{

1 Xi = Yi = 1,
0 otherwise.

b =
∑n

i=1 ξi, ξi =
{

1 Xi = 1, Yi = 0,
0 otherwise.

c =
∑n

i=1 ξi, ξi =
{

1 Xi = 0, Yi = 1,
0 otherwise.

d =
∑n

i=1 ξi, ξi =
{

1 Xi = Yi = 0,
0 otherwise.

(6)

Note, that the total: a+ b+ c+d is a constant value and equals n, i.e. the length
of the binary string. Tested affinity measures are as follows:
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Russel and Rao: f =
a

n
, (7)

Sokal and Michener: f =
a + d

n
, (8)

Jaccard and Needham: f =
a

a + b + c
, (9)

Kulzinski: f =
a

b + c + 1
, (10)

Rogers and Tanimoto: f =
a + d

a + d + 2(b + c) ,
(11)

Yule: f =
ad − bc

ad + bc
. (12)

A Hamming distance dH is a well known measure and it could be denoted in
terms of a, b, c, d as dH = b + c.

The last of the discussed measures is the r -contiguous bits matching rule. The
rule is a classifier rather than a measure because it returns just two values, true
and false. True is returned (i.e. the classifier says that two patterns match each
other) if there will be a sequence of bits of size r which are identical in both
patterns. False is returned otherwise.

Additionally a transformation T operator [8] was applied to the measured bit-
strings. Before the evaluation every pair was modified by a T operator working
as follows. For every two patterns A, B ∈ {0, 1}N :

∀i∈{0,1,...,N}A[i] = 0 ⇒ (A[i] = 1 ∨ B[i] = 1 − B[i]) (13)

The operator reduces the search space, e.g. for a set of 65536 pairs of 8-bit
binary strings we obtain 256 different transformed pairs. After transformation
one of the strings is always turned into a sequence of digits ”1”, while the other
includes information about differences between the input strings. The operator
is simple and of low computational cost and it significantly modifies properties
of the measure and improves their sensitivity.

The operator should be applied just before matching. Every matched pair of
strings is at first turned into a new pair with the T operator and then the measure is
applied to the new pair of strings.The returned value is assigned to the original pair
of strings, i.e. the pair before transformation. The transformed X [i] never equals
zero (one of the resulting strings is always a sequence of digits ”1”) so the values c
and d in (6) are equal zero for all pairs of transformed binary strings.

All the measures except from Yule (12) were applied to the transformed pairs
of binary strings too. In case of Yule the transformed pair of bit-strings cannot
be evaluated because of division by zero problem (the denominator always equals
zero). The definitions of the measures (7) – (11) changed as follow:

T1: f =
a

a + b
(14)

T2: f =
a

b + 1
(15)

T3: f =
a

a + 2b
(16)
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where (14) originates from both (7), (8) and (9), (15) – from (10), and (16) –
from (11). The transformed Hamming distance turns to the formula dHT = b.

4 Tuning the Network

In the first phase of our research we observed the dynamics of the model i.e. the
change of concentration of different types of antibodies. The change is expressed
by life spans of the objects since the objects with high concentration live longer
(and even forever, i.e. as long as the experiment continues) while the ones with
decreasing concentration quickly reach theminimumvalue andare eliminated from
the system. This way the life span of the objects tells a lot about the environment
where they have to live. Another parameter good for observing the properties of
the system is average number of types of antibodies. For better understanding of
the graphs it necessary to note, that in contrast to other network models the size
of repertoire of types of antibodies was fixed. Therefore new types were recruited
only if some other disappeared and made room in the repertoire.

This group of experiments was performed for the system without antigens thus
just the first and the second rule of interactions influenced on the concentration
levels. Verification of ability of the system to build a stable structure of interactions
was the goal of this part of experiments. This group of experiments allowed us also
to tune the system. The role of selected measures as well as the two thresholds
mentioned above, at and st which control the sensitivity of the antibodies were
compared in these experiments.

4.1 Average Life Span and Average Number of Antibodies

The results of experiments with different values of thresholds at and st are pre-
sented in Figure 1 (average life span of types of antibodies) and 2 (average number
of types of antibodies). Each of the figures consist of eight graphs for eight affin-
ity measures and for six of them (7) – (10) and r -contiguous bits rule two versions
of measures were tested: without and with transformation T. Thus for each of the
six there are two landscapes in the graph except for the Yule affinity measure (12)
which can not be applied with transformation T and the Hamming – applied just
with transformation T. Every experiment was repeated 20 times therefore every
point in the graphs is the mean of the obtained 20 average life spans or average
numbers of types of antibodies.

The activation factor ηa was set to 1.11111 and the suppression factor ηs – to
0.9. The thresholds st and at for Hamming distance and r -contiguous bits rule
changed from 1 to 15 with step 1 while for the remaining six measures – from 0.1
to 0.9 with step 0.1. For all the cases minimum level of concentration was set to 0.1
and the maximum – to 9999.The population consisted of 1000 objects representing
different types of antibodies and every experiment took 500 iterations. Thus the
minimum average number of types of antibodies in the system is 1000 and their
maximum average life span is 500.

There are two extremebehaviors observed in the graphs.Thefirst behavior is the
case where all the types of antibodies die immediately after introduction into the
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Fig. 1. Average life span of types of antibodies in the system for different types of affinity
measures. Solid line – the measure without transformation T, dashed line – the measure
with transformation T.
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Fig. 2. Average number of types of antibodies in the system for different types of affinity
measures. Solid line – the measure without transformation T, dashed line – the measure
with transformation T.
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system. This is the case when the average life span reaches minimum value and the
average number of types of antibodies – maximum. The concentration decreases
immediately and the types of antibodies are eliminated from the system. The new
ones which replaced the eliminated types live shortly too. The second behavior is
the case where all the antibodies live forever and the life span is maximal while the
average number of antibodies – minimal. In the first case the suppression pressure
is stronger than the activation one. The concentration of all the types of antibod-
ies goes down just after their appearance in the system so the set of antigens is
continuously changing. Just the opposite situation is in the second case where the
activation pressure is much stronger than the suppression and the concentrations
of each of the types of antibodies quickly reach maximum level. So the set of types
is constant from the beginning till the end of experiment. None of the two cases
represents a system which would be able to learn anything.

The most promising case is the result where the life span as well as the average
number of types of antibodies is between the minimum and the maximum value.
Unfortunately there are measures that do not satisfy this requirement. Especially
when we look at the life span it can be seen that for Russel and Rao (with and with-
out T), Sokal and Michener (with and without T), Rogers and Tanimoto without
T, Kulzinski without T, Yule, Hamming and r -contiguous bits matching rule it is
very difficult or even impossible to find the values for thresholds at and st giving
the requested behavior of the system. The remaining measures allows to be tuned
and in those cases it is expected that the system will construct a stable set of de-
pendencies between types of antibodies.

4.2 Histograms of Ages of Antibodies

To confirm our conjectures based on the average life span and average number of
types of antibodies we gathered more detailed information about the lifetime of
types of antibodies appearing during the experiments. Figures 3 and 4 present sam-
ple histograms with mortality of types respecting to their maximum age for three
different settings of thresholds at and st.

The histograms in Figures 3 and 4 represent distribution for the lifetime of ob-
jects representing types of antibodies in the system. The histograms 3.a (at = 0.6
st = 0.7) and 4.a (at = 0.2 st = 0.3) obtained for Jaccard and Needham affinity
measure without and with transformation T represent the most requested situa-
tion. It can be seen that there is a set of objects living for short and even very short
time but there are also the types of antibodies which live longer or even for the time
of the entire experiment, and so the distribution stretches out to the right. Between
these two extremes there are also some types of antibodies which live neither very
short nor forever albeit among them there could be also those which were created in
the middle of the experiment and which lived till the end of the test. Besides it can
be seen that the histogram obtained with transformation T is more regular than
the one without T. This observation indicates that the transformation T makes
results of Jaccard and Needham affinity measure more predictable.

Thehistograms3.b and4.b (both obtainedwithat = 0.1 st = 0.5) aswell as3.c
and 4.c (both obtained with at = 0.6 st = 0.1) represent the system working with
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Fig. 3. Histogram of ages of antibodies for Jaccard and Needham without transformation
T. X axis – lifetime, Y axis – number of antibodies died at that age.
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two extreme parameters setting. The b histograms represent the case when the ac-
tivation pressure is too strong and all the antibodies live forever. The c histograms
show just the opposite situation where the suppression pressure outweighs and all
the types of antibodies die immediately after they are introduced into the system.

5 Learning the Antigens

The last part of our experiments is concerned with testing of the system with anti-
gens. For our tests we selected Jaccard and Needham affinity measure with trans-
formation T and a set of five types of antigens. We searched for such a set of five
types where the affinity to each other was the smallest. A new object represent-
ing a type of antigens was injected into the system after every 5 iterations of the
algorithm. After a copy of the fifth type of antigen the next injected object was a
copy of the first one. Figure 5 presents two sample histograms with life spans of the
subsequently injected objects. Every bar in the histograms represents a life span of
a single object. There are five colors of bars because these are life spans of objects
of the five types of patterns. There is a hundred life spans in each of the histograms
so each experiment took 500 iterations. The bars are grouped by the number of
presentation of the five types of antigens – each of them was presented 20 times.
Initial concentration of the added objects was set to 1.

In Figure 5 the histogramshows the case where all the five types of antigens were
presented from the beginning of the experiment. It was expected that shortly after
the beginning of experiment there would appear multiple copies of objects repre-
senting the same types of antigens. However it was also expected that after some
time the network would modify its set of types of antibodies and new types that are
able to recognize the injected antigens would appear. Eventually the modification
of the network would produce the desired effect i.e. the concentration of the ob-
jects representing antigens would shrink below the minimal limit and they would
be eliminated. The histogram shows that after some time the network of antibodies
adapted to the presence of new types of antigens.
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6 Conclusions

In this paper the new specification of the immune network model is proposed. The
specification differs in a set of fundamental assumptions from the others [2]. Among
the differences we could mention the following: the network is build of the objects
representing types of antibodies and types of antigens instead of just antibodies
or antigens, there is a constant size of repertoire of types of antibodies during the
experiment, strength of stimulation or suppression depends on the number of dif-
ferent types being above the affinity threshold anddoes not dependon their concen-
tration, the concentration is responsible only for the lifetime of the type of antibody
or antigen, relations of stimulation and suppression between types of antibodies as
well as relation between types of antibodies and types of antigens can be controlled
by different affinity thresholds. Some of these assumptions are not in accordance
with commonly accepted biological point of view.

The experiments show that proposed rules of dynamics and metadynamics of
the system based on the binary shape-space build a stable network. Three types
of the network behavior can be observed: two of them when the network is not
able to establish itself because all the new objects die immediately after intro-
duction into the system or in the opposite case all the objects once added live
forever. The third type of behavior is the requested one where some of the anti-
bodies live longer but a recruitment of the new ones is also performed and this
way the stable network is build. It was observed that the chances for stable net-
work strongly depends on the type of affinity measure. For some of the measures
it was impossible to tune the affinity thresholds successfully. A new transforma-
tion T operator was proposed which significantly influenced the properties of the
measures and when applied gave a set of three new measures resulting in more
regular and predictable behavior of the network. Further work could be focused
on testing all the selected efficient measures applied in the network where a set
of new patterns is presented.
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Abstract. Idiotypic network models of the immune system have long
attracted interest in immunology as they offer a potential explanation
for the maintenance of immunological memory. They also give a possi-
ble justification for the appearance of tolerance for a certain category
of cells while maintaining immunization for the others. In this paper,
we provide new evidence that the manner in which affinity is defined in
an idiotypic network model imposes a definite topology on the connec-
tivity of the potential idiotypic network that can emerge. The resulting
topology is responsible for very different qualitative behaviour of the net-
work. We show that using a 2D shape-space model with affinity based
on complementary regions, a cluster-free topology results that clearly di-
vides the space into tolerant and non-tolerant zones in which antigen are
maintained or rejected respectively. On the other hand, using a 2D shape-
space with an affinity function based on cell similarity, a highly clustered
topology emerges in which there is no separation of the space into iso-
lated tolerant and non-tolerant zones. Using a binary shape-space, both
similar and complementary affinity measures also result in highly clus-
tered networks. In the networks whose topologies exhibit high clustering,
the tolerant and intolerant zones are so intertwined that the networks
either reject all antigen or tolerate all antigen.

1 Introduction

Part of a Nobel lecture that Niels Jerne gave the 8th December 1984 in France
[7] focusing on idiotypic networks was also more specifically concerned with the
definition of affinity between two clones. In this lecture, he compared this affinity
with the matching problem between pieces of sentence (for example referring to
Chomsky’s work on universal grammar). He suspected that the way this affinity
would be defined might provide the final network of connected clones with very
different properties. From very early papers of Varela and Coutinho dedicated to
immune idiotypic networks [11,12], the in-depth attention paid to the topology
of the connectivity is obvious.

Despite the lack of empirical data relating to the connectivity matrix which
made it impossible to make any definitive statement on the analytical nature
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of the topology, it is evident that Varela did not see the connectivity of this
system as simply random like in Erds graph, but rather well structured and
playing a key role in the functionality of the system. For instance, he discussed
the topology of this connectivity as a possible cause or signature of some auto-
immune diseases whose treatment was inspired by this new network perspective.
He showed, using again very scant data, that people suffering from auto-immune
disease could present a less densely connected network than healthy ones. This
default in connectivity could decrease the network effect and thereby provoke
homeostatic failure by perturbing the emergent regulatory effect of this network.

It is hard not to see in these studies (together with the critical quest for more
experimental data), a pioneering approach to discovering the structure and the
functionality of biological networks. Today, this is receiving renewed attention,
and advancements in our knowledge and understanding are being made by a
new generation of physicists enthusiastic about small-world effects and scale-free
topology [1,9]. This paper carries on this quest with new and very unexpected
findings.

1.1 Affinity: Complementarity or Similarity ?

The study of the effects of affinity between cells was facilitated by by the no-
tion of shape-space introduced by [8] as a method for representing biological
molecules and therefore capturing affinities between them. There have been nu-
merous attempts to exploit this simple idea. The most typical interpretations
(by both immunologists and computer scientists) utilise either a real-valued uni-
verse or bit-string universe to represent cells. Biologically, it is well established
that two cells recognise or have an affinity with each other if the cells contain
complementary shaped regions that can “fit” together — the “lock and key”.

In a bit-string universe, it is straightforward to model the notion of a com-
plementary matching. Hence, a number of affinity functions have been proposed
which are physiologically plausible based on finding complementary matching re-
gions between two strings [8]. For example, this could take the form of counting
complementary bits or identifying contiguous regions of complementary bitwise
matches along two strings. A study of the properties of a bit-string shape-space
with affinity defined in terms of Hamming distance by Bersini in [3] suggested
that this model can give rise to tolerant and intolerant zones in the shape-space,
in which some antigens can be tolerated and others rejected, although this work
has not since been replicated.

Complementarity can also be defined in a real-valued universe. Bersini [2]
proposed a shape-space model implemented in 2D in which affinity was based
upon complementary matching between cells by supposing that a cell exerts a
domain of affinity in a zone which is situated in region obtained by reflecting
the cell through the centre of symmetry of the space. This is consistent with the
biological notion of a lock-and-key. [2] showed that this led to model in which
regions of tolerance and intolerance emerged naturally from the dynamics of the
idiotypic network, without need for pre-defining cells as being of a particular
type. This model was later explored in greater depth by Hart in [6,5] which
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confirmed that these zones exists and further more showed that the shape of the
zones, and therefore the subsequent properties of the network could be controlled
by altering the shape of the domain of affinity exerted by a cell.

However, in recent years, as the AIS community has focussed it’s attention
more and more on producing tools to solve engineering problems, it is almost
always the case that affinity in a real-valued shape-space has been re-defined
in terms of similarity. Thus, for example, Timmis [10] introduces an idiotypic
network model in which real-valued vectors represent B-Cells (for example, at-
tributes of a data-set). In this discrete immune network, cells are connected
simply if the Euclidean distance between two cells is less than some threshold
they refer to as the network affinity threshold. This approach is now endemic in
most practical applications of AIS that utilise vector representations. It seems
surprising that such little attention has been paid to whether the use of com-
plementarity of similarity has any effect on the dynamics of network formation
and performance – in fact, it is even observed by [4] that “(surprisingly) it is not
that important in most cases”.

In this paper, we show that contrary to opinion, the definition of affinity im-
poses a very definite topology on an emerging network, which has subsequent
important consequences for the properties that we can expect a network to ex-
hibit. The paper is organised as follows. First, two different network models are
introduced, in 2D and in a bit-string universe. We then show how the 2D model
with complementary matching gives rise to tolerant and intolerant zones in the
shape-space. This is then contrasted to the bit-string shape-space with both com-
plementary and similar matching functions. Finally, we explain the anomalous
results we find by analysing a 2D model with a similarity-based affinity function
which can be visualised in a straightforward manner.

2 Network Models

In this section, we describe the 2D and binary network models in which we
obtain our results.

2D Shape-space model. The following 2D shape-space model was first proposed
by Bersini in [2] and subsequently adopted in further work by [6,5] in which
the effect of the shape of the cell recognition region was explored. The shape-
space is defined on a 2D integer-grid of dimension X, Y . A cell is specified by a
position (x, y) on the grid. The potential network therefore consists of a possible
X × Y cells. Cells can be considered as connected nodes on a graph if one cell
is stimulated by another cell. The manner in which one cell stimulates another
depends on the affinity function defined. If affinity is defined as complementary,
then a cell A stimulates another B if B lies within a circular region of radius r
centered on the point (X − x, Y − y). On the other hand, if affinity is defined
between similar cells, then A stimulates B if B lies within a circular region of
radius r centered on A itself. Using these definitions, the following algorithm
can be used to simulate the growth on an idiotypic network in which there are
potential interactions between both cells and cells, and cells and antigens:
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1. Generate at random a new antibody cell (x,y) and add with concentration
10.

2. (Possibly) add a new antigen with coordinates (xa, ya) and concentration
1000.

3. Calculate the stimulation SAb of each antibody cell
4. If L < SAb < U , increase the concentration of the cell by 1, otherwise

decrease it by 1
5. Calculate the stimulation SAg of each antigen cell
6. If L < SAg, decrease the concentration of the antigen according to SAg/(L ∗

100).
7. Remove any cells whose concentration has reached 0.

Stimulation of cells and antigens is calculated according to the equations be-
low. For the complementary model, then Ab′ and Ag′ represent the complemen-
tary position of an antibody Ab or an antigen Ag, given by (100−x, 100− y) for
a grid of dimension 100x100. For the similarity model, then Ab′ = Ab and Ag′ =
Ag. The terms Ac and Ec represent the concentration of the antibody A and the
antigen E respectively, and r represents the recognition radius of the cell and
assumes a circular recognition region surrounding each complementary point.

SAb =
∑

antigens A

Ac(r − ||A − Ab′||) +
∑

cells E

Ec(r − ||E − Ab′||) (1)

SAg =
∑

cells E

Ec(r − ||E − Ag′||) (2)

Binary Model. Except for the definition of clone identity, the binary model
closely follows the previous description regarding the 2D-shape space. Instead of
a point in a plane, each cell is now identified by a binary bit-string of N bits and
the affinity a cell i exerts on another cell j is defined by the following equation

Affinity(i, j) = 100.Ci.(HD(i, j) − T )/(Nbits − T ) (3)

with Ci being the concentration of the cell i, HD the hamming distance between
the two bit-strings and T , the affinity threshold, playing an equivalent role of the
parameter r in the 2D shape-space model. Like before, the total affinity (field)
received by a cell i, Si, is obtained by summing the affinity for all cells present
in the system, given that this affinity can either be positive or null. Note that
antibodies can be stimulated by antigens and antibodies, while antigens can only
be stimulated by antibodies.

Keeping the system as resembling as possible to the 2D shape-space model,
the algorithm is as follows:

1. Generate at random a new antibody cell (bit-string) having an affinity field
between L and U, with concentration 75.

2. (Possibly) add a new antigen with concentration 100.
3. Calculate the stimulation SAb received by each antibody
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4. If L < SAb < U , increase the concentration of the antibody by 1, otherwise
decrease it by 1

5. Calculate the simulation SAg received by each antigen according
6. If L < SAg, decrease the concentration by 1.
7. Remove any cells whose concentration has reached 0.

3 Experimental Results

We first consider models with complementary affinity function. In 2D shape-
space, in order to be consistent with work reported previously in [6,5] and by [2],
experiments are performed on a grid of size 100x100, resulting in 10000 potential
cells. The values of the lower limit L and upper limit U are fixed at L = 100
and U = 10, 000. Previous work shows that interesting network behaviour is
obtained when r = 15, therefore this value is used in these experiments unless
otherwise indicated. (Below this value, percolation does not occur therefore a
network does not emerge; at high r, the high suppressive effect of cells also does
not result in a stable network). Antibody cells are added to the simulation with
concentration 10; antigen cells are added with concentration 1000.

In the simulations with bit-strings, we consider strings of length 13, creating
a space of 8192 possible cells, a potential repertoire size of similar size as the 2D
shape-space. The lower limit L and upper limit U take respectively values 5000
and 10000. T is the affinity threshold (similar to r in the 2D shape-space model)
and define the lower limit of complementarity to get stimulation. Regarding the
idiotypic network as just a graph, we may say that a cell A is connected with a
cell B, if the Hamming Distance between A and B is higher than this threshold
T. A high T value imposes a system where an almost perfect complementarity is
needed for stimulation, whereas a low T tolerates very poor complementarity for
the network to pop up. Each combination of parameters gives rise to different
stabilized networks. The size of the stable network will depend primarily on the
Threshold level (T) and the size of the window (U and L). For low specificity
(low T), the network exhibits a high average degree, which may result in a excess
of stimulation depending on the Upper limit of the stimulation window. In this
case of over-stimulation, the network is not able to pop up since the majority of
nodes can hardly remain under the upper limit. The opposite can also happen.
When almost perfect complementarity is needed for stimulation (very high T),
the average degree of the network will be so low that nodes cannot be stimulated
over the lower stimulation limit. So, for an idiotypic network to pop up, an
optimal individual average stimulation value must be found, which depends on
a balance between the cells’ initial concentration, upper and lower limit of the
stimulation window, and the affinity threshold.

As reported in previously, the 2D shape-space model results in the physical
space being clearly separated by a line of sustained antibody cells into two dis-
tinct regions. In one of these regions, antigens are tolerated; in the other all
antigens are suppressed. The position of these zones, and the resultant ability of
cells to be maintained by the network, emerges only from the network dynamics.
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Fig. 1. Snapshot of a network obtained after 10000 iterations of a network in 2D shape-
space with a complementary affinity function

Fig. 2. Field experienced by a cell occupying each potential site of the grid following
emergence of the network

There is no need to pre-label cells as being of a particular type, e.g antigen or
antibody. Figure 1 illustrates an example of a network obtained using this model
after 10,000 iterations. Although the two zones are easily seen, we can obtain
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Fig. 3. Stimulation observed at potential site of the grid following emergence of the
network

more insight into the model by examining the field that would be received by
a hypothetical cell occupying each of the potential sites on the grid given the
existing network. This field is calculated according to equation 1. Concentration
of all cells is assumed to be 1 to make visualisation of the field easier (without
loss of generality). The result is illustrated in figure 2, in which darker shading
indicates higher field, and vice-versa. The top half of the diagram clearly shows
a zone in which all potential sites experience some field; the strength of the field
itself varies throughout the zone. In the lower half of the diagram, the majority of
sites experience no field at all (antibodies cannot survive in the complementary
zone) therefore are tolerant to any cell. Transient reactive regions occur in this
region; due to the nature of the algorithm, cells are continuously added to the
grid and survive for a minimum of 10 iterations. If these cells occur in the intol-
erant zone, they temporarily stimulate cells in the lower half — observe however
that the shading indicates the reactivity is very low at these sites. The effect the
field has on survival of potential cells is illustrated in figure 3 for antibody cells.
This figure does account of the concentration of cells at iteration 10000 when
calculating stimulation at each site: the upper zone shows sites in which the total
stimulation received at a site is greater than 10000 (therefore concentration of a
cell at that site decreases). The marked sites in the lower zones represent sites
at which the stimulation received at the site is less that 100 which also results in
a concentration decrease. Sites at which nothing is marked indicate those places
in which the stimulation falls between the lower and upper limits and therefore
the concentration of cells at these sites rises. The sites therefore occur along the
boundary lines of the zones, and in the transient regions. For antigens, their
concentration is decreased if their total stimulation exceeds the lower limit L.
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Fig. 4. Comparison of antigen tolerance in 2D and bitstring models

However, as their concentration is decreased according to stimulation/(100∗L),
if L = 100 then in practice, an actual decrease in concentration is only observed
when the total stimulation exceeds 10000 (concentration takes integer values
only in the model). Therefore, antigens will be rejected from the exactly the
same upper zones of the diagram shown in the previous antibody figure where
stimulation > U .

The shape of the boundary separating the regions, and the resulting ability
of the network to reject or tolerate antigen is dependent on the radius of the
recognition region used. The left hand side of figure 4 illustrates the number of
antigens tolerated by the network when a set of 50 randomly generated anti-
gens are presented to the network at iteration i and evolution continued for a
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Fig. 5. Field experienced by cells occupying each potential site of the grid following
emergence of the network. In the upper diagrams,S=stimulation, L=lower limit (100)
and U=upper limit (10000). Field refers to stimulation calculated using constant con-
centration of 1.
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further 2000 iterations. This shows a smooth transition in the number of tol-
erated antigen as r is increased. At large r, all antigens are tolerated by the
network. This is due to the fact that at extreme values of r, the recognition re-
gion covers this entire grid; thus every cell stimulates every other cell, resulting
in very large value of stimulation which cause any cell added to the network to be
suppressed. Antigen cells are tolerated as they are added at higher concentration
than antibody cells, therefore outlive any antibody cell that may potentially kill
them.

The right hand diagram of figure 4 shows results obtained using a bit-string
model using a complementary affinity function. Surprisingly and in contrast with
the 2D shape-space, no antigens are tolerated by the network.

4 Why do the Models in Binary and 2D Shape-Space not
Concur?

The results in the previous section have shown that surprising results are ob-
tained when comparing a 2D shape-space to a bit-string shape-space. In an
attempt to explain this, we examine the distribution of the field received at

Fig. 6. Field experienced by every potential bit-string in the bit-string space, following
emergence of the network, for four different affinity thresholds.
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each potential site in both the bit-string and 2D universes. If the space is really
separated into tolerant and intolerant zones, then we expect to find a distribution
in which a large number of the cells receive little or no field, and the remainder
receive high field. Figures 5 and 6 illustrate the result for both shape-spaces.
The histograms obtained show very similar distributions — in both cases show
a power-law distribution (e.g y = x−a) is observed. For the 2D shape-space, as
expected, a large number of sites receive no field whatsoever. The remainder
receive a spread of field-values, indicating their reactivity. Thus, the different
shape-spaces appear to both support the notion that tolerant and non-tolerant
regions should be observed in the shape space. Yet we have just shown in the
previous section that this is not the case! In the next section, we offer an expla-
nation for this effect.

5 Complementarity Is not the Same as Similarity

An explanation for the inability of the networks obtained in bit-string shape
space can be gleaned by first considering the behaviour of a network in 2D shape-
space with an affinity function based on similarity. Consider figure 7 which shows
a snapshot of a network obtained after 10000 iterations of a network in which
cells a and b stimulate each other if b lies within a recognition region centered
on a. Contrast this picture with the snap-shot of the network obtained with a
complementary affinity function shown in figure 1. There is now no separation
of the physical space into distinct zones; rather we see a “Jackson Pollock” like
distribution of cells throughout the shape-space. Figure 8 illustrates the field
now received by hypothetical cells placed at each potential site in the network,
and those sites at which the total stimulation received is greater than 10,000.
The field is now much more homogeneous across the network, caused by the

Fig. 7. Snapshot of a network obtained after 10000 iterations of a network in 2D shape-
space with a similarity affinity function
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Fig. 8. Examination of field and stimulation received at potential network sites for 2D
shape-space with similarity based affinity
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Fig. 9. Stimulation and Concentration of an antigen added to a network evolved using
a similarity based affinity function

intertwining of tolerant and intolerant regions which averages out the total field
received at any site. Almost every site appears to be potentially reactive. One
therefore might expect the network to be intolerant of any antigens at all — sim-
ulation and experimentation proves the opposite. In fact, the network is tolerant
of all antigens presented. Although at first glance surprising, the result is clearly
explained: figure 9 plots the stimulation and concentration received by a single
antigen randomly added to the network for 2000 iterations. Initially, the stimu-
lation received by the antigen is high and it’s concentration therefore decreases.
This in turn results in a decrease in the stimulation of the antigen as the anti-
gen now stimulates corresponding antibody cells less – therefore its stimulation
(and concentration) continue to decrease. However, when the stimulation of the
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cell is reduced to below 10000, this is no longer sufficient to cause any further
decrease in concentration of the cell (recall that concentration decreases by an
amount stimulation/(100 ∗ L). Therefore, at this point, although its stimula-
tion continues to decrease, it’s concentration remains constant from this point
onwards.

We can now offer an explanation for the observed results based on the cluster-
ing observed between cells that arises from the network topology. In a bit-string
space, the networks that emerge will necessarily have high cluster coefficient due
to the nature of the affinity function, whether it is defined in a complementary
or similar manner: if a interacts with b which interacts with c, there is a good
chance that a can also interact with c due to the affinity measure which allows
such connections via a series of different matching sequences. Consider a trivial
example in a 3-bit universe; if the affinity function is such that cells with 2-
mismatches can connect, then a = 000 can connect to b = 110 which connects to
c = 011 which in turn connects back to a = 000. Thus, any antigen will always
find itself with two kinds of responding antibodies closely located in the space,
one in high and the other in low concentration. At the end, the response of the
network to any antigen intrusion just depends on the initial concentration of this
antigen and therefore no longer on the position of this antigen. The space has
been uniformly filled up with all kinds of antibodies. No clustering of antibodies
with similar concentration would be possible. Similarly, using a similarity affinity
function in the 2D model, we also obtain highly clustered networks, in which it
is possible to form the triangle a − b − c, therefore we observe the same effects
as just described for th binary network.

In 2D shape-space using a complementary affinity function however, then it
is clear that the cluster-coefficient is necessarily close to 0 and no clustering can
occur — if a stimulates b and b stimulates c, then c cannot stimulate a. This can
easily be seen by drawing a simple diagram. The only exception to this is for cells
located very close to the centre of the space, where (X−x, Y −y) is approximately
equal to (x, y), and therefore the triangle a − b − c can occur for some values.
The network topology therefore prevents clusters, but facilitates the emergence of
chains of cells which are able to separate the space into distinct regions. This rea-
soning is confirmed by calculating the cluster coefficients of the networks pictured
in figures 1 and 7 which exhibit cluster coefficients of 0.012 and 0.566 respectively.

6 Conclusion

We have shown the role played by the potential network (the network defined
by all possible cells and all possible interactions) in defining whether or not it is
possible for tolerant and intolerant zones to co-exist in a network. If the cluster
coefficient of a network is zero (or close to 0), then it is possible for two distinct
zones to co-exist. Although since the origin of networks in immunology (essen-
tially with idiotypic networks) the topology has always raised a lot of interest,
this is the first time it has been shown how this topology influences an essen-
tial capability of the network: to separate zones of tolerance from immunisation
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zones. While previous authors have independently decided to make the choice
between adopting a binary shape space or a 2D one, this paper intends to show
that this choice is far from neutral.
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Abstract. Permutation masks were proposed for reducing the number
of holes in Hamming negative selection when applying the r-contiguous
or r-chunk matching rule. Here, we show that (randomly determined)
permutation masks re-arrange the semantic representation of the under-
lying data and therefore shatter self-regions. As a consequence, detec-
tors do not cover areas around self regions, instead they cover randomly
distributed elements across the space. In addition, we observe that the
resulting holes occur in regions where actually no self regions should
occur.

1 Introduction

Applying negative selection for anomaly detection problems has been undertaken
extensively [1,2,3,4]. Anomaly detection problems, also termed one-class classifi-
cation, can be considered as a type of pattern classification problem, where one
tries to describe a single class of objects, and distinguish that from all other pos-
sible objects. More formally, one-class classification is a problem of generating
decision boundaries that can successfully distinguish between the normal and
anomalous class. Hamming negative selection is an immune-inspired technique
for one-class classification problems. Recent results, however, have revealed sev-
eral problems concerning algorithm complexity of generating detectors [5,6,7]
and determining the proper matching threshold to allow for the generation of
correct generalization regions [8]. In this paper we investigate an extended tech-
nique for Hamming negative selection: permutation masks. Permutation masks
are immunologically motivated by lymphocyte diversity. Lymphocyte diversity
is an important property of the immune system, as it enables a lymphocyte to
reacting to many substances, i.e. it induces diversity and generalization. This
kind of generalization process inspired Hofmeyr [3,9] to propose a similar coun-
terpart for use in Hamming negative selection. Hofmeyr introduced permutation
masks in order to reduce the number of undetectable elements. It was argued
that permutation masks could be useful for covering the non-self space efficiently
when varying the representation by means of permutation masks (see Fig. 1).

H. Bersini and J. Carneiro (Eds.): ICARIS 2006, LNCS 4163, pp. 122–135, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Visualized concept of varying representations by means of permutation masks
to reduce the number of undetectable elements. The light gray shaded area in the
middle represents the self regions (normal class in terms of anomaly detection). The
dark gray shaded shapes represent areas which are covered by detectors with varying
representations. The white area represents the non-self space (anomalous class in terms
of anomaly detection). This figure is taken from [9].

In the following two sections we briefly introduce the standard negative selec-
tion inspired anomaly detection technique.

2 Artificial Immune System

An artificial immune system (AIS) [10] is a paradigm inspired by the immune
system and are used for solving computational and information processing prob-
lems. An AIS can be described, and developed, using a framework [10] which
contains the following basic elements:

– A representation for the artificial immune elements.
– A set of functions, which quantifies the interactions of the artificial immune

elements (affinity).
– A set of algorithms which based on observed immune principles and methods.

This 3-step abstraction (representation, affinity, algorithm) for using the AIS
framework is discussed in the following sections.

2.1 Hamming Shape-Space

The notion of shape-space was introduced by Perelson and Oster [11] and allows
a quantitative affinity description between immune components known as an-
tibodies and antigens. More precisely, a shape-space is a metric space with an
associated distance (affinity) function.
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The Hamming shape-space UΣ
l is built from all elements of length l over a

finite alphabet Σ.

Example 1.

Σ = {0, 1}

000 . . .000
000 . . .001
. . . . . . . . . .
. . . . . . . . . .
111 . . .111︸ ︷︷ ︸

l

Σ = {A, C, G, T}

AAA . . . AAA
AAA . . . AAC
. . . . . . . . . . . .
. . . . . . . . . . . .

TTT . . . TTT︸ ︷︷ ︸
l

In example 1 two Hamming shape-spaces for different alphabets and alphabet
sizes are presented. On the left, a Hamming shape-space defined over the binary
alphabet of length l is shown. On the right, a Hamming shape-space defined over
the DNA bases alphabet (Adenine, Cytosine, Guanine, Thymine) is presented.

2.2 R-Contiguous and R-Chunk Matching

A formal description of antigen-antibody interactions not only requires a repre-
sentation (encoding), but also appropriate affinity functions. Percus et. al [12]
proposed the r-contiguous matching rule for abstracting the affinity of an anti-
body needed to recognize an antigen.

Definition 1. An element e ∈ UΣ
l with e = e1e2 . . . el and detector d ∈ UΣ

l

with d = d1d2 . . . dl, match with r-contiguous rule, if a position p exists where
ei = di for i = p, . . . , p + r − 1, p ≤ l − r + 1.

Informally, two elements, with the same length, match if at least r contiguous
characters are identical.

An additional rule, which subsumes1 the r-contiguous rule, is the r-chunk
matching rule [13].

Definition 2. An element e ∈ UΣ
l with e = e1e2 . . . el and detector

d ∈ N×DΣ
r with d = (p | d1d2 . . . dr), for r ≤ l, p ≤ l−r+1 match with r-chunk

rule, if a position p exists where ei = di for i = p, . . . , p + r − 1.

Informally, element e and detector d match if a position p exists, where all
characters of e and d are identical over a sequence of length r.

We use the term subsume as any r-contiguous detector can be represented as a
set of r-chunk detectors. This implicates that any set of elements from UΣ

l that
can be recognized with a set of r-contiguous detectors can also be recognized
with some set of r-chunk detectors. The converse statement is surprisingly not
true, i.e. there exists a set of elements from UΣ

l that can be recognized with a set

1 Include within a larger entity.
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of r-chunk detectors, but not recognized with any set of r-contiguous detectors.
We demonstrate this converse statement on an example, a formal approach is
provided in [14].

Example 2. Given a Hamming shape-space U
{0,1}
5 , a set

S = {01011, 01100, 01110, 10010, 10100, 11100} of self elements and a detector
length r = 3.

All possible generable r-contiguous detectors for the complementary space
U

{0,1}
5 \ S are Dr−contiguous = {00000, 00001, 00111, 11000, 11001}.

All possible generable r-chunk detectors are
Dr−chunk = {0|000, 0|001, 0|110, 1|000, 1|011, 1|100, 2|000, 2|001, 2|101, 2|111}.
The set Dr−contiguous recognizes the elements
P1 = U

{0,1}
5 \ (S ∪ {01010, 01101, 10011, 10101, 11101, 11110}),

whereas the set Dr−chunk recognizes the elements
P2 = U

{0,1}
5 \ (S ∪ {10011, 01010, 11110}). Hence |P1| ≤ |P2|.

Example 2 shows, that the set of r-chunk detectors Dr−chunk recognizes more
elements of U

{0,1}
5 than the set of r-contiguous detectors Dr−contiguous and there-

fore the r-chunk matching rule subsumes the r-contiguous rule.

3 Hamming Negative Selection

Forrest et al. [1] proposed a (generic2) negative selection algorithm for detecting
changes in data streams. Given a shape-space U = Sseen ∪ Sunseen ∪ N which
is partitioned into training data Sseen and testing data (Sseen ∪ Sunseen ∪ N).
The basic idea is to generate a number of detectors for the complementary space
U \ Sseen and then to apply these detectors to classify new (unseen) data as self
(no data manipulation) or non-self (data manipulation).

Algorithm 1. Generic Negative Selection Algorithm
input : Sseen = set of self seen elements
output: D = set of generated detectors
begin

1. Define self as a set Sseen of elements in shape-space U
2. Generate a set D of detectors, such that each fails to match any element in
Sseen

3. Monitor (seen and unseen) data δ ⊆ U by continually matching the
detectors in D against δ.

end

The generic negative selection algorithm can be used with arbitrary shape-
spaces and affinity functions. In this paper, we focus on Hamming negative
2 Applicable to arbitrary shape-spaces.



126 T. Stibor, J. Timmis, and C. Eckert

selection, i.e. the negative selection algorithm which operates on Hamming shape-
space and employs the r-chunk matching rule and permutation masks.

3.1 Holes as Generalization Regions

The r-contiguous and r-chunk matching rule induce undetectable elements —
termed holes (see Fig. 2). In general, all matching rules which match over a
certain element length induce holes. This statement is theoretically investigated
in [15,14] and empirically explored3 in [16]. Holes are some4 elements from U \
Sseen, i.e. elements not seen during the training phase. For these elements, no
detectors can be generated and therefore they cannot be recognized and classified
as non-self elements. However, the term holes is not an accurate expression, as
holes are necessary to generalize beyond the training set. A detector set which
generalizes well ensures that seen and unseen self elements are not recognized
by any detector, whereas all other elements are recognized by detectors and
classified as non-self. Hence, holes must represent unseen self elements; or in
other words, holes must represent generalization regions in the shape-space UΣ

l .

1000

0001

�

�

100 000

000 001 = {0001, 1001}

= {1000, 0000}

= {s1, h1}

= {s2, h2}

r − 1

Fig. 2. Self elements s1 = 0001 and s2 = 1000 induce holes h1, h2, i.e. elements which
are not detectable with r-contiguous and r-chunk matching rules for r = 3

4 Permutation Masks

Permutation masks were proposed by Hofmeyr [3,9] for reducing the number of
holes. A permutation mask is a bijective mapping π that specifies a reordering
for all elements ai ∈ UΣ

l , i.e. a1 → π(a1), a2 → π(a2), . . . , a|Σ|l → π(a|Σ|l).
More formally, a permutation π ∈ Sn, where n ∈ N, can be written as a 2 × n
matrix, where the first row are elements a1, a2, . . . , an and the second row the
new arrangement π(a1), π(a2), . . . , π(an), i.e.(

a1 a2 . . . an

π(a1) π(a2) . . . π(an)

)
For the sake of simplicity we will use the equivalent cycle notation [17] to specify
a permutation. A permutation in cycle notation can be written as (b1 b2 . . . bn)
and means“b1 becomes b2, . . . , bn−1 becomes bn, bn becomes b1. In addition, this
notation allows the identity and non-cyclic mappings, for instance (b1) (b2 b3) (b4)
means : b1 → b1, b2 → b3, b3 → b2 and b4 → b4.
3 Hamming, r-contiguous, r-chunk and Rogers & Tanimoto matching rule.
4 The number of holes is controlled by the matching threshold r.
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4.1 Permutation Masks for Inducing Other Holes

As explained above, a permutation mask is a bijective mapping and therefore can
increase or reduce the number of holes — there also exists permutation masks
which results in self elements which neither increase nor reduce the number of
holes. The simplest examples is the identity permutation mask.

For reducing the number of holes, π must be chosen at an appropriate value,
and a certain number of detectors must be generable.

Reconsider the self elements s1 = 0001, s2 = 1000 in figure (2). One can see
that elements h1 = 1001 and h2 = 0000 are not detectable by the r-contiguous
and r-chunk matching rule. However, after applying the permutation mask π0 =
(1 2 4 3), i.e.

π0(s1) = 0010, π0(s2) = 0100

one can verify (see Fig. 3) that holes h1, h2 are eliminated.

π0(1000)

π0(0001)

�

�

010 100

001 010 = {0010}

= {0100}

= {π0(s1)}

= {π0(s2)}

r − 1

Fig. 3. The permutated self elements π0(s1) and π0(s2) induce no holes by r-contiguous
and r-chunk matching rule

However, it is also clear that (1 2 4 3) (2 4 3 1), (4 3 1 2) and (3 1 2 4) represent
the same permutation, namely the cycle permutation of π0 = (1 2 4 3). Specif-
ically, all cycle permutations of an arbitrary selected π leads, in terms of the
r-chunk and r-contiguous matching, to the same holes.

On the other hand, there do exist permutation masks which do not reduce
holes, i.e. π(si) = sj , for i �= j and self elements s1, s2, . . . , s|S|. An example is
the permutation π1 = (14)(2)(3), as π1(s1) = s2 and π1(s2) = s1.

Furthermore, as mentioned above, a permutation mask can also increase the
number of holes. In our subsequent presented experiments this is illustrated for
instance in figures5 5(c) and 5(d).

5 Permutation Masks Experiments in Hamming Negative
Selection

In [18,8] results were presented which demonstrated the coherence between the
matching threshold r and generalization regions when the r-chunk matching rule
in Hamming negative selection is applied. Recall, as holes are not detectable by
any detector, holes must represent unseen self elements, or in other words holes
must represent generalization regions. In the following experiment we will investi-
gate how randomly determined permutation masks will influence the occurrence
5 With and without permutation mask.
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of holes (generalization regions). More specifically, we will empirically explore
if holes occur in suitable generalization regions when a randomly determined
permutation mask is applied. Finally, we explore empirically whether randomly
determined permutation masks reduce the number of holes.

Stibor et al. [8] have shown in prior experiments that the matching thresh-
old r is a crucial parameter and is inextricably linked to the input data being
analyzed. However, permutation masks were not considered in [8]. In order to
study the impact of permutation masks on generalization regions, and to obtain
comparable results to previously performed experiments [8], we will utilize the
same mapping function and data set. Furthermore, we will explore the impact
of permutation masks on an additional data set (see Fig. 4).

5.1 Experiments Settings

The first self data set contains 1000 Gaussian (μ = 0.5, σ = 0.1) generated points
p = (x, y) ∈ [0, 1]2. Each point p is mapped to a binary string

b1, b2, . . . , b8︸ ︷︷ ︸
bx

, b9, b10, . . . , b16︸ ︷︷ ︸
by

,

where the first 8 bits encode the integer x-value ix := �255 ·x+0.5� and the last
8 bits the integer y-value iy := �255 · y + 0.5�, i.e.

[0, 1]2 → (ix, iy) ∈ [1, . . . , 256 × 1, . . . , 256] → (bx, by) ∈ U
{0,1}
8 × U

{0,1}
8

This mapping is proposed in [18] and also utilized in [8] — it satisfies a straightfor-
ward visualization of real-valued encoded points in Hamming negative selection.
The second data set (termed banana data set) is depicted in figure (4) and is a com-
monly used benchmark for anomaly detection problems [19]. The banana data set
is taken from [20] and consists of 5300 points in total. These points are partitioned
in two different classes, C+ which represents points inside the“banana-shape”and
class C− which contains points outside of the“banana-shape”. In this experimentwe
have taken points from C+ only for simulating one self-region (similar to figure 1).
More specifically, we have normalized with min-max method all points from C+
to the unitary square [0, 1]2. We then sampled 1000 random points from C+ and
mapped those sampled points to bit-strings of length 16.

As the r-chunk matching rule subsumes the r-contiguous rule, i.e. recognize
at least as many elements as the r-contiguous matching rule (see section 2.2), we
have performed all experiments with the r-chunk matching rule. Furthermore,
as proposed in [3,9] we have randomly determined permutation masks π ∈ S16.

5.2 Experimental Results

In figures (5,6,7,8) experimental results are presented. The black points represent
the 1000 sampled self elements, the white points are holes, and the grey points
represent areas which are covered by r-chunk detectors. It is not surprising that
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Fig. 4. Banana data set (points from class C+), min-max normalized to [0, 1]2. In an
perfect case (error-less detection), the r-chunk detectors should cover regions outside
the “banana” shape. The region within the “banana” shape is the generalization region
and should consists of undetectable elements, i.e. holes and self elements.

for both data sets, holes occur as they should in generalization regions when
8 ≤ r ≤ 10. This phenomena is discussed and explained in [8]. To summarize
results from [8], a detector matching length which is not at least as long as the
semantical representation of the underlying data — in this case 8 bits for x and
y coordinates — results in incorrect generalization regions.

What is more interesting though, is the observation that a (randomly deter-
mined) permutation mask shatters the semantical representation of the under-
lying data (see Fig. 5-8 (b,d,f,h,j,l,n,p,r,t)) and therefore, holes are randomly
distributed across the space instead of being concentrated inside or close to self
regions. This observation also means that detectors are not covering areas around
the self regions, instead they recognize elements which are also randomly dis-
tributed across the space. Furthermore one can see that the number of holes
— when applying permutation masks (see Fig. 5-8 (b,d,f,h,j,l,n,p,r,t)) — is in
some cases significantly higher than without permutation masks (see Fig. 5-8
(a,c,d,e,g,i,k,m,q,s)). This observation could be explained with the previous ob-
servation, that permutation masks distort the underlying data and therefore
shatter self regions. As a consequence the underlying data is transformed into a
collection of random chunks. For randomly determined self elements, Stibor et
al. [6] showed that the number of holes increase exponentially for r := l → 0.

Of course this shattering effect is linked very strongly to the mapping function
employed. However it is clear that each permutation mask — except the identity
permutation — semantically (more or less) distort the data. Furthermore, we
believe that finding a permutation mask which does not significantly distort the
semantical representation of the data may be computational intractable6.

6 In the worst-case, one have to check all n! permutations of Sn.
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(a) r = 2 (b) r = 2, π (c) r = 3 (d) r = 3, π

(e) r = 4 (f) r = 4, π (g) r = 5 (h) r = 5, π

(i) r = 6 (j) r = 6, π (k) r = 7 (l) r = 7, π

(m) r = 8 (n) r = 8, π (o) r = 9 (p) r = 9, π

(q) r = 10 (r) r = 10, π (s) r = 11 (t) r = 11, π

Fig. 5. A visualized simulation run, with 1000 random (self) points generated by a
Gaussian distribution with mean μ = 0.5 and variance σ = 0.1. The grey shaded area
is covered by the generated r-chunk detectors, the white areas are holes. The black
points are self elements. The captions which include a “π” are simulations results with
the randomly determined permutation mask π ∈ S16.
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(a) r = 2 (b) r = 2, π (c) r = 3 (d) r = 3, π

(e) r = 4 (f) r = 4, π (g) r = 5 (h) r = 5, π

(i) r = 6 (j) r = 6, π (k) r = 7 (l) r = 7, π

(m) r = 8 (n) r = 8, π (o) r = 9 (p) r = 9, π

(q) r = 10 (r) r = 10, π (s) r = 11 (t) r = 11, π

Fig. 6. An additional visualized simulation run, with 1000 random (self) points gen-
erated by a Gaussian distribution with mean μ = 0.5 and variance σ = 0.1. The grey
shaded area is covered by the generated r-chunk detectors, the white areas are holes.
The black points are self elements. The captions which include a “π” are simulations
results with the randomly determined permutation mask π ∈ S16.
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(a) r = 2 (b) r = 2, π (c) r = 3 (d) r = 3, π

(e) r = 4 (f) r = 4, π (g) r = 5 (h) r = 5, π

(i) r = 6 (j) r = 6, π (k) r = 7 (l) r = 7, π

(m) r = 8 (n) r = 8, π (o) r = 9 (p) r = 9, π

(q) r = 10 (r) r = 10, π (s) r = 11 (t) r = 11, π

Fig. 7. A visualized simulation run, 1000 randomly sampled (self) points from banana
data set. The grey shaded area is covered by the generated r-chunk detectors, the white
areas are holes. The black points are self elements. The captions which include a “π”
are simulations results with the randomly determined permutation mask π ∈ S16.
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(a) r = 2 (b) r = 2, π (c) r = 3 (d) r = 3, π

(e) r = 4 (f) r = 4, π (g) r = 5 (h) r = 5, π

(i) r = 6 (j) r = 6, π (k) r = 7 (l) r = 7, π

(m) r = 8 (n) r = 8, π (o) r = 9 (p) r = 9, π

(q) r = 10 (r) r = 10, π (s) r = 11 (t) r = 11, π

Fig. 8. An additional visualized simulation run, with 1000 randomly sampled (self)
points from banana data set. The grey shaded area is covered by the generated r-
chunk detectors, the white areas are holes. The black points are self elements. The
captions which include a “π” are simulations results with the randomly determined
permutation mask π ∈ S16.
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In order to obtain representative results, we performed 50 simulation runs,
each with a randomly determined permutation mask for both data sets. Due
to the lack of space to present all 50 simulation runs, we have selected two
simulation results at random for each data set (see Fig. 5,6,7,8). The remaining
simulation results are closely comparable to results in figures (5,6,7,8).

6 Conclusion

Lymphocyte diversity is an important property of the immune system for recog-
nizing a huge amount of diverse substances. This property has been abstracted in
terms of permutation masks in the Hamming negative selection detection tech-
nique. In this paper we have shown that (randomly determined) permutation
masks in Hamming negative selection, distort the semantic meaning of the un-
derlying data — the shape of the distribution — and as a consequence shatter
self regions. Furthermore, the distorted data is transformed into a collection of
random chunks. Hence, detectors are not covering areas around the self regions,
instead they are randomly distributed across the space. Moreover the resulting
holes (the generalization) occur in regions where actually no self regions should
occur. Additionally we believe that it is computational infeasible to find permu-
tation masks which correctly capture the semantical representation of the data
— if one exists at all. We conclude that the use of permutation masks casts doubt
on the appropriateness of abstracting diversity in Hamming negative selection.
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20. Rätsch, G.: Benchmark repository (1998)
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.



 

H. Bersini and J. Carneiro (Eds.): ICARIS 2006, LNCS 4163, pp. 136 – 149, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Gene Libraries: Coverage, Efficiency and Diversity 

Steve Cayzer1 and Jim Smith2 

1 HP Laboratories, Bristol BS34 8QZ UK  
steve.cayzer@hp.com  

2 University of the West of England, Bristol BS16 1QY UK  
james.smith@uwe.ac.uk  

Abstract. Gene libraries are a biological mechanism for generating combinatorial 
diversity in the immune system. However, they also bias the antibody creation 
process, so that they can be viewed as a way of guiding lifetime learning 
mechanisms. In this paper we examine the implications of this view, by 
examining coverage, avoidance of self, clustering and diversity. We show how 
gene libraries may improve both computational expense and performance, and 
present an analysis which suggests how they might do it. We suggest that gene 
libraries: provide combinatorial efficiency; improve coverage; reduce the cost of 
negative selection; and allow targeting of fixed antigen populations.  

Keywords: gene libraries, artificial immune systems, antibodies, diversity, 
Baldwin effect, lifetime learning. 

1   Introduction 

Immune systems in nature must recognise undesirable antigens while avoiding auto 
immune reactions. Gene libraries may help both aims; by providing initialisation bias 
away from self space; and by providing a species memory to map antigen space. What 
could this mean for AIS? Could gene libraries be used to intelligently seed our 
algorithm? In a previous paper [1] we postulated that gene libraries might: 

1. improve non-self space coverage – through better placement of detectors 
(antibodies), over and above random creation; 

2. reduce the cost of detector generation by more effectively avoiding self; 
3. map the antigen population more accurately; and 
4. help deal with co-evolving antigens 

In that paper, we showed that option 2 is somewhat easier to achieve than option 1. 
Here we extend and analyse these results, and tackle option 3. Option 4 is left for 
future work. The rest of this paper proceeds as follows.  

In Section 2 we review the biological background and related AIS research. In 
Section 3 we provide an initial analysis of the effect of evolving different numbers of 
libraries in the presence of uniformly distributed populations of self and non-self 
(antigen) strings. We show that gene libraries can attain superior coverage in this 
case, and that 2 libraries work as well as, even better than, 1 library. This is 
significant given the combinatorial advantages of using multiple libraries. All libraries 
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work much better than random creation; we show that libraries give rise to many 
more antibodies then random creation, due to increased efficiency (chance of 
producing a valid antibody) – that is, reducing the cost of negative selection. 

It is tempting to infer a causal link between efficiency and coverage, but in section 
4 we show that concentrating purely on the cost of negative selection actually reduces 
the number of antibodies produced, by reducing diversity. While these results confirm 
what might be suspected from a simple combinatorial analysis, in both “real” immune 
systems, and AIS applications, it is extremely rarely, if ever, the case that either the 
self or non-self population to be matched is uniformly distributed. 

In section 5 we turn our attention to non uniform spaces, and show how different 
patterns of self and antigen clustering affect both coverage and efficiency. Choosing a 
number of points in cluster space to analyze, in section 6, we show that gene libraries 
not only produce more antibodies, but those they do produce are targeted around the 
antigen clusters. Finally in Section 7 we conclude that gene libraries: provide 
combinatorial efficiency, improve coverage and reduce the cost of negative selection. 
Most importantly, they allow the targeting of fixed antigen populations.  

2   Background and Related Work 

In the biological immune system, both T cell receptors and antibodies are generated 
by combining fragments from gene libraries. The gene library mechanism appears at 
first to be wasteful: to make a protein of about 200 amino acids we require enough 
DNA to make almost 12000 amino acids. However this 60-fold redundancy enables 
2M combinations; this potential diversity is of course augmented by the well known 
somatic hypermutation mechanism [2]. The expressed diversity is, of course, likely to 
be somewhat lower not least become some combinations will be autoreactive (hence 
screened out by negative selection or other mechanisms [3]). A more detailed account 
is found in [1] where we speculate that gene libraries, shaped by evolution, are used to 
guide the B cell creation process to create antibodies with a good chance of success, 
while preserving the ability to respond to novel threats.  

With regard to gene libraries in AIS, a seminal paper by Perelson et al [4] showed 
that gene libraries can enhance coverage in the absence of a ‘self’ set.  Hightower et al 
[5] showed that the ‘best’ coverage was achieved by a high Hamming  distance 
(spread out antibodies) – but not too high. A maximal separation actually allows gaps 
in coverage (analogous to gaps between disjoint spheres). Oprea & Forrest [6] showed 
that as the pathogen set size decreases, the structure of the gene library changes, 
moving from a ‘coarse mapping’ of antigen space towards a more focused targeting of 
pathogenic clusters. We present complementary analyses to these papers by studying 
clustering of both antibodies and antigens.  

Other work by Hart and Ross [7,8] and Kim and Bentley [9,10,11] have used gene 
libraries to improve performance of an AIS application; we argue in [1] that these 
approaches use the gene library metaphor as an engineering artefact and would 
benefit from a principled analysis of when and how to use gene libraries. We reiterate 
our aim that we would like to build a bridge between the established theoretical 
foundations and current AIS engineering practice. 
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3   Gene Libraries for Coverage 

The most naïve way of looking at antibody creation is a way of covering a 
multidimensional area (antigen space). This is somewhat complicated by the necessity 
of avoiding self. Do evolved gene libraries improve such coverage? What about the 
effect of different numbers of gene libraries? In order to answer these questions, we 
evolved a number of different library configurations (see table 1) and tested them 
using 8 bit r contiguous matching on antibodies/antigens of 32 bits.   

Table 1. Configuration of gene libraries. We kept the number of antibodies and their size 
(almost) constant in each case. Each row shows how we created these antibodies using a 
combination of gene library segments, and how we changed the segment size and number of 
genes per library in each case. Genome size is calculated as the sum of (#segments * size of 
segment) for each library. 

Number 
libraries 

Segments in 
each library 

Size of each 
segment 

Number 
antibodies 

Genome 
size 

1 1089 32 1089 34848 
2 33,33 16,16 1089 1056 
3 11,11,9 11,10,11 1089 321 
4 6,6,6,5 8,8,8,8 1080 184 

For each of these different configurations a generational Genetic Algorithm (GA) 
was run for 2000 generations. The GA had a population of size 128, used binary 
tournaments to select parents, one point crossover with probability 0.7 and mutation 
with a bit-wise probability of 1/genome_len. To assess the effect of random creation 
in libraries we ran a parallel set of experiments with the bit-wise mutation probability 
set to 50%. When performed with 1 library this is equivalent to classical random 
creation without libraries. 

Twenty five self sets of 128 proteins were created, each with a corresponding non-
self set of 1024 antigens, none of which exactly matched any of the self proteins. 
These were used as the basis for the 25 runs of each algorithm. Individuals were 
assessed by creating all of the possible antibodies encoded for (1080 or 1089 as 
appropriate) and then removing those which were an 8 bit r-contiguous match to any 
of the self set. The remaining antibodies (“detectors”) were used to assess the 
coverage of the non-self set. 

Figure 1 shows the coverage attained by the best-performing individual over 2000 
generations (x-axis), averaged over twenty five runs. This illustrates how the use of 
evolving gene libraries comprehensively outperforms random creation on this basic 
task. Averaged over the last 500 generations, ANOVA, and by post-hoc testing using 
Tamhane’s T2 test (which does not assume equal variance) revealed that the 
performance of the 2 libraries was best (98.14%) followed by 1 library (97.80%), 
followed by 3 libraries (76.20%) and 4 libraries (56.97%). All results are significantly 
different at the 95% confidence level. 

Very similar results can be seen if we compare the average population coverage, 
although interestingly in this case the use of 1 library gave the best result (97.8%) 
compared to 97.0% coverage for 2 libraries, again statistically significant. 
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In order to begin to understand the extremely poor performance of random creation 
compared to the evolving libraries, we recorded the number of detectors created by 
each solution; that is the number of antibodies left after negative selection. Figure 2 
shows a plot of the mean number of detectors in each generation for the different 
algorithms, averaged over the 25 runs. This reveals that for all random creation 
variants the vast majority of the potential antibodies produced are screened out by the 
negative selection process, so only a very few detectors remain. It is also notable that 
evolving 1 library produces far fewer detectors than evolving 2, 3 or 4.  
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Fig. 1. Coverage of best performing individual over 2000 generations (x axis). Each result 
shows the % antigens matched (y axis) by antibodies created from a varying number of 
libraries. The results using random creation are shown for comparison. Values averaged over 
25 runs.  

Interestingly, when the highest number of detectors per generation is plotted the 
GA with 4 libraries creates more detectors than the 2, 3 and 1 libraries (in that order) 
and vastly more than the random methods.  Since the mean and best fitness had 
converged by this time, this indicates that convergence had occurred, but around a 
very “brittle” region, so that random mutations were producing a few very poor 
individuals in each generation. This would imply a very “rugged” structure for the 
library-landscape, (low fitness-distance correlation). Intuitively, as the number of 
libraries increases, so the combinatorial effects of changing one element of any library 
become more dramatic: changing one gene in a 1-library system only affects one 
detector, but if in a  4-library system it makes that fragment rcb-match a self protein it 
will make 216 detectors auto-reactive. Clearly this merits further investigation.  

Table 2 presents the summary data from these experiments; all differences are 
significant except those between the random variants. 
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Fig. 2. Mean Number of detectors created (y-axis) against generation (x-axis) for different 
algorithms. Results are averaged over 25 runs. 

Table 2. Mean and standard deviations of observed variables for each algorithm averaged over 
last 500 generations of 25 runs. Bold type indicates highest performing algorithm. 

Model 
 

 Mean 
number of 
detectors 

Highest 
number of 
detectors 

Mean 
Coverage

Highest 
coverage 

GA- 1 Lib Mean 63.2890 64.0814 97.7844 97.8075 
  Std. Dev. 5.15973 5.40025 1.15710 1.15014 
GA- 2 Libs Mean 227.1930 257.1702 97.0047 98.1453 
  Std. Dev. 21.78812 24.94944 .54271 .51352 
Ga – 3 Libs Mean 178.7102 232.9614 71.3728 76.2019 
  Std. Dev. 30.45022 38.96799 1.45540 1.31451 
GA – 4 Libs Mean 178.1495 277.3882 50.8206 56.9651 
  Std. Dev. 44.95472 67.29847 2.26689 2.24031 
Rnd - 1 Lib Mean 2.2309 6.9018 10.1409 28.6972 
  Std. Dev. .43560 1.24078 1.89157 4.09810 
Rnd - 2 Libs Mean 1.8511 11.2350 6.1164 23.8114 
  Std. Dev. .33315 3.05073 .92953 3.45564 
Rnd - 3 Libs Mean 2.0710 17.7266 4.9721 22.0440 
  Std. Dev. .44342 6.11281 .71997 3.09263 
Rnd - 4 Libs Mean 2.0829 23.0511 3.7466 19.1931 
  Std. Dev. .49558 8.99772 .62348 2.76287 
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4   Gene Libraries for Avoiding Self 

In the above analysis, it would seem that the AIS has optimised for creating a large 
number of antibodies; clearly it is effective at avoiding self. Could gene libraries 
provide a bias to assist negative selection; that is, make the creation process cheaper? 
Certainly, if we change the fitness function to be purely the avoidance of self (ie the 
success rate of antibody creation) then gene libraries indeed have a profound effect on 
the cost of negative selection [1]. 

However, it is possible that this reduction in the cost of negative selection comes at 
the cost of other desirable features. In order to investigate this hypothesis we used a 
similar GA setup with simple AIS gene library individuals (3 libraries, 16 bits 
(5+6+5), 6 bit r-contiguous matching) and measured both the efficiency of producing 
detectors, and also the diversity of different detectors produced. As can be seen from 
Figure 3 this ‘pure’ measure has the effect of reducing genome diversity: in other 
words, one gets a high proportion of ‘safe’ (non self reactive) antibodies – but also a 
large number of duplicates.  Clearly there is a trade-off between coverage and cost of 
creation. 

 

Fig. 3. Effect of using avoidance of self as a fitness function (self), as opposed to coverage 
(antigen), combined (both) or simply using a random creation strategy. The left figure shows 
that AIS individuals can evolve gene libraries with a far higher (36%) chance of producing 
valid antibodies than one whose fitness function measures only coverage (antigens; 13%) and 
far above random creation (5%). All differences are statistically significant (wilcoxon). In the 
right figure, the ‘self’ AIS individuals have roughly half the diversity of the others (unique 
number of antibodies; 470 cf 950 antigen, 983 random). All differences significant except 
antigen/random. 

5   Mapping Antigen 

It is well known that many real proteins fall into “families” with similar 
configurations, and that in general both the sets of self proteins and possible antigens 
will come from a non-uniform probability distribution across the space of possible 
conformations. The same general consideration is true for many real world datasets; 
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were it not; techniques like k nearest neighbour could not work. In order to investigate 
what effect this has on the utility, or otherwise, of gene libraries we constructed 
parameterised data set generators for creating self and non-self sets. Given a number 
of clusters, (0 being uniform distribution), for each of these a cluster centroid is 
randomly generated. The rest of the set is evenly divided to become clones of these 
centroids.  For each clone we generate a number of bits to be changed using a zero 
mean Gaussian distribution with standard deviation 5. That number of positions 
within the string are chose uniformly at random, and those bits changed to produce 
the new protein. If this is not a duplicate, it is accepted into the set. 

We ran the GA using the same parameters as before for 500 generations for each 
combination of self and non-self clusters in the range {0,…,5}. 
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Fig. 4. Best coverage (y-axis) in generation 500 as a function of the number of  self (x-axis) and 
non-self clusters. (z-axis). Graphs show (from top left, clockwise) 1 ,2 ,4 ,3 libraries, and are 
averaged over 25 runs. Note that 1 cluster is the most tightly clustered; the distribution gets 
most spread out as number of clusters increases to 5, and then again at 0 clusters (unclustered). 

Figure 4 shows the best coverage obtained in the final (500th) generation, as a 
function of the number of self and non-self clusters. The corresponding plots for the 
mean coverage are extremely similar. For one library, the GA evolves to give near-
perfect coverage except when self is unclustered. As the number of libraries increases, 
coverage is still very high for multiple clusters, but another effect becomes apparent. 
Coverage is lower for the unclustered antigens and increases as antigen becomes more 
clustered, reaching a maximum at 1 antigen cluster. Intuitively, a single antigen 
cluster is the easiest to cover, but the trend is accentuated for unclustered self which is 
most likely to induce ‘holes’ which cover antigen (see section 6).  
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Fig. 5. Mean number of detectors created in final generation (y-axis) as a function of non-self 
clusters (x-axis) and self-clusters (z-axis). Again, 1 cluster is the most tightly clustered; 0 the 
least. Note reversed direction of scales. Graphs are average of 25 runs and show (clockwise 
from top left) 1,2,4,3 libraries.  

Figure 5 shows the mean number of antibodies surviving negative selection. In 
every case this number is highest for 1 self cluster, and decreases through to 5 self-
clusters, being lowest for uniformly distributed self; also the point of lowest 
coverage.  

For 1 library, the number of detectors is not strongly affected by the number of 
non-self clusters, which is what might be expected as the latter has no effect on 
negative selection. However, as the number of libraries increases the number of 
detectors created seems to be linked to the number of antigen clusters, rising from 1 to 
5 clusters and highest for uniform distribution. This may reflect an increase in the 
number of duplicate detectors, although a detailed analysis of several sample datasets 
(section 6) found no duplicates. Alternatively, it may reflect an increasing probability 
that any randomly placed antibody which does not match self will match an antigen, 
and so contribute to the fitness of that individual. In other words, as the antigens 
spread out, so the utility of simply avoiding self increases on average, although the 
possibility of obtaining complete antigen coverage from the set of detectors also 
decreases. This would explain the apparent paradox of decreasing coverage (fig 4) for 
an increasing number of detectors as the antigen becomes less clustered. Put another 
way, for more clustered antigens the AIS can get higher coverage from a smaller 
number of tightly focused detectors, a hypothesis which is explored in the next 
section. 
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6   Analysis of Coverage 

We have seen in the last section that self clustering drives increased coverage and an 
increase in the number of detectors made. Antigen clustering also increases coverage 
but decreases the number of receptors made. In this section we take a closer look at 
these results, to examine the strategies that our AIS employs for covering antigens 
under different cluster arrangements. For example, is antibody clustered, and how 
does this clustering change according to environment? In order to answer this 
question, we analysed representative antibody populations taken from different points 
in the self cluster/antigen cluster space. In each case we analyzed one representative 
individual and compared this against (averaged) random performance. 

Table 3 shows the number of antibodies produced for each point in cluster space. 
Interestingly, these figures contain no duplicate detectors. Greater numbers of 
antibodies are produced by the individuals that use 2 or 3 gene libraries. The number 
of antibodies created increases with the number of self clusters and decreases with the 
number of antigen clusters.  

Table 3. Number of antibodies produced by gene library individuals for different points in 
cluster space (data shown graphically in figure 5). The biggest number of antibodies produced 
for each point in cluster space is shown in bold; for each gene library configuration by 
underlining. For comparison, random creation (table 2) consistently produces <25 antibodies. 

Description 1lib 2 libs 3 libs 

0self - 0antigens 43 261 170 

0self - 5antigens 38 157 94 

2self-  2 antigens 124 361 441 

5self - 0antigens 120 490 669 

5self - 5antigens 88 343 579 

We were interested in seeing how coverage compared against the theoretical 
optimum and a random creation strategy. The latter is easy to test – we just randomly 
create antibodies (discarding duplicates) until we get the same number that the gene 
libraries produce. The former is more difficult, but fortunately Wierzchon [12] has 
shown how this is possible. We used his paper to code an algorithm, the pseudocode 
of which is shown in Figure 6. 

Figure 7 shows that, in general, coverage increases as the antigen clustering 
increases. Use of one library consistently outperforms random antibodies; two and 
three libraries require a clustered space to do so. It is important to bear in mind that 
random here refers to the same number of antibodies; as 2 and 3 libraries produce 
large numbers of antibodies (see table 3), then the same number of (randomly 
produced) antibodies will of course give high coverage. The cost of creation is not 
taken into account here, as it is dealt with in Section 3. As reported in section 5, the 
best coverage is achieved with highly clustered self and antigens.     
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CalculateOptimum(self) 

  // get all r-bit templates eg **1100** 
  templates = getTemplatesIn(self) 

  // see below 
  addHoles(templates) 

  // count number of proteins induced 
  FOR each leaf template eg ****0001 
    numInduced = 1 

  FOR each non leaf template 
    numInduced = SUM numInduced for children 
  // Note that undetectable includes self 
  undetectable = SUM numInduced for roots 
  holes = undetectable - self 

  optimum = (nonself – holes)/nonself 

addHoles(templates)    

  // iterative process 
  while (size of templates growing)  

    for each template 

      // case 1 - children - if *11** and its 
         ‚spouse’ *01** are both part of self, 
         then logically so are the children 
         *11* and **10* 
      IF templates contain spouse THEN 
        add children 

      // case 2 - parents - if **11* and its 
         ‚sibling’ **10* are both part of self 
         then logically so are the parents 
         *11** and *01** 
      IF templates contain sibling THEN 
        add parents 

Fig. 6. Wierzchon’s algorithm [12] for counting number of holes using rContiguous bits. The 
theoretical optimum is the size of non self space minus the number of holes. 

The template algorithm suggested by Wierzchon gives us a useful metric for 
measuring diversity. Figure 8 shows the number of templates (per antibody or protein) 
found in the different self sets, antigen sets and corresponding antibodies produced 
randomly and by the gene libraries. As expected, low numbers of self or antigen 
clusters give the lowest numbers of templates (i.e. highest degree of clustering). One 
library gives diverse antibodies, close to, or even higher than, random creation in 
nature. Two and three libraries give the reverse; much tighter clustering, especially 
for the 2self-2antigens scenario. Recalling this is a point of high coverage (with less 
than the maximum numbers of antibodies) this is suggestive of a reason for the 
libraries’ efficacy. 
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Description maximum 1lib random stdev 2 libs random stdev 3 libs random stdev 

0self0antigens 0.999 0.928 0.827 0.012 0.966 0.994 0.003 0.729 0.987 0.002 

0self5antigens 0.996 0.979 0.828 0.031 0.995 0.978 0.004 0.943 0.961 0.019 

2self2antigens 1.000 1.000 0.968 0.025 1.000 0.999 0.001 0.999 0.998 0.002 

5self0antigens 1.000 1.000 0.983 0.006 1.000 1.000 0.000 0.901 1.000 0.000 

5self5antigens 1.000 1.000 0.957 0.020 1.000 0.998 0.003 0.994 1.000 0.000  

Fig. 7. Coverage values for various cluster configurations and library sizes. In each case, the 
theoretical maximum antigen coverage (against the given antigen set) is plotted against gene 
library performance. The random coverage is the coverage achieved using random creation of 
the same number of antibodies (see table 3). 
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description self antigen 1lib Random stdev 2lib random stdev 3lib random stdev 
0self0antigens 19.70 6.00 21.98 20.38 0.35 4.20 9.57 0.14 3.11 12.51 0.26 
0self5antigens 19.70 4.20 22.71 21.03 0.43 5.41 12.99 0.21 4.20 16.26 0.45 
2self2antigens 10.27 3.28 17.60 17.58 0.41 2.37 10.52 0.16 1.38 9.15 0.08 
5self0antigens 11.78 6.00 17.53 17.41 0.22 2.57 8.04 0.09 1.18 6.25 0.05 
5self5antigens 11.78 4.20 19.20 19.07 0.38 2.89 10.35 0.15 1.16 7.03 0.05  

Fig. 8. Number of templates produced in self, antigen, evolved and randomly created libraries  
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Fig. 9. Number of antigen templates covered (9a-top) and antibody templates covering (9b – 
bottom) as a function of number of random or evolved libraries. The former indicates how 
completely each antigen is covered, the latter how targeted the antibodies are on the antigen 
population. 
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Wierzchon’s algorithm also allows us to measure degree of targeted coverage. So, 
for example, the number of antigen templates covered (Figure 9a) show how 
completely the antigens are matched, while the number of antibody templates 
covering (Figure 9b) indicate how ‘targeted’ the antibody set is at that particular 
antigen population. Again, templates covered (9a) for one library is close to or above 
‘random’ behaviour, while two and three libraries cover far fewer antigen templates, 
even when delivering superior coverage (for example, 2 libraries with 0self5antigens). 
The targeting of antibodies (fig 9b) shows a higher than random focusing of templates 
only in tightly clustered scenarios (eg 2lib2antigens); this is consistent with an 
antibody population tailored to the fixed antigen set. 

7   Conclusions 

Gene libraries clearly introduce initialisation bias to antibody creation. We have 
shown that such bias induces superior coverage, but that this improvement is not 
purely through reducing the cost of negative selection, nor of combinatorial effects; 
rather some antigen mapping must be occurring. For unclustered antigens, the 
antibodies generated retain high diversity; as the antigens become more clustered the 
antibody population becomes less diverse (fig 8) and more targeted (fig 9). The 
comparable (even superior) performance of 2 libraries (versus 1 library) is also 
compelling given the combinatorial advantages.  In summary, we suggest that gene 
libraries: provide combinatorial efficiency; improve coverage; reduce the cost of 
negative selection; and allow targeting of fixed antigen populations. 

We have chosen to analyse gene libraries by assessing their effect on established 
AIS notions of negative selection and coverage. However, gene libraries will also 
have an impact on other immune metaphors such as homeostasis [13] and danger 
[14], and these topics would be interesting directions for future work. Representation 
other than bit-strings, and mapping operators other than rContiguous bits, would also 
be suitable subjects for further work. Dealing with co-evolving antigens is another 
topic for further study.  

For now, we conclude that gene libraries do appear to produce a tangible benefit in 
a defined space, we suggest a mechanism whereby they achieve this, and present a 
method for analysing their performance.  
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Abstract. This paper motivates the use of Object Oriented technologies such as 
OO programming languages, UML and Design Patterns in order to facilitate the 
development and the communication of immune system software modeling. 
The introduction justifies the need for immune computer models at different 
levels of abstraction and for various reasons: pedagogy, testing and study of 
emergent phenomena and quantitative predictions. Then the benefits allowed by 
adopting the OO way are further illustrated by simple examples of UML class, 
state and sequence diagrams and instances of Design Patterns such as the 
“Bridge” or the “State”, helping to question and to clarify the immune objects 
and relationships. Finally an elementary clonal selection model, restricted to B 
cells, antibodies and antigens, and fully developed in the OO spirit is presented.  

1   Introduction 

All scientific disciplines carrying a name that begins with “artificial” (followed by 
“life”, “reality”, “intelligence” or “immune system”) are similarly suffering from a 
very ambiguous identity. Their line of research tries to find a way somewhere in the 
crossroad of engineering (building useful artefacts), natural sciences (biology or psy-
chology – improving the comprehension and prediction of natural phenomena) and 
theoretical computer sciences (developing and mastering the algorithmic world). 
Accordingly and depending on which of these perspectives receives more support, 
they attempt at attracting different kind of scientists and at stimulating different kind 
of scientific attitudes. While the “Alife” community is recently re-focusing its atten-
tion on theoretical biology, engaged in the process of re-attracting genuine biologists 
in their community, in our more modest AIS community, it is clearly the “engineer-
ing” perspective that has been the most represented and still prevails over the years. 
Since the origin of engineering and technology, nature has offered a reserve of inex-
haustible inspirations which have stimulated the development of useful artefacts for 
man. Artificial life has led to new computer tools, such as genetic algorithms, Boo-
lean and neural networks, robots learning by experience, cellular machines and others 
which create a new vision of IT for the engineer: parallel, adaptable and autonomous. 
In this kind of informatics, complex problems are tackled with the aid of simple 
mechanisms, but infinitely iterated in time and space. In this kind of informatics, the 
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engineer must be resigned to partly losing control if he wishes to obtain something 
useful. The computer finds the solutions by brute force trial and error, while the engi-
neer concentrates on observing and indicating the most promising directions for re-
search. Due to a limited but sharp understanding of the immune system as, first of all, 
a pattern recognition and classifier system, able to separate and to distinguish the bad 
from the good stimuli just on the basis of exogenous criteria, the main derived appli-
cations have been “classification”, “clustering” and “optimisation”.  In previous 
ICARIS I already had the opportunity to regret this state of affairs since I can not 
succeed to see any new useful ideas that “engineers” did not have, even in the absence 
of the least concern for immunology. As a consequence, I would rather attempt in this 
paper to make a plea for following the “Alife” re-centring and for a shift from the 
engineering to the “modelling” perspective, by which the “theoretical immunologist” 
would turn back to be the more precious partner of the discussion.  

But what theoretical immunologists, who obviously did not wait for us in their 
modelling enterprise ([1, 5, 9, 10, 11, 23, 25, 27]), can expect from us and from this 
advocated rebalancing. If, so far, we failed to convince the engineers of any possible 
insight, how else could we convince the immunologist even more knowledgeable of 
this common topic of interest? What can they expect from these new “merlin hack-
ers”, whose ambitions seem, above all, disproportionably naïve? Before answering 
that key question, I would like to review how computer models of theoretical biology, 
whoever develops them, can be useful in various ways. These ways will be presented 
in terms of their increasing importance or by force of impact. First of all, software 
models can open the door to a new style of training of some major biological princi-
ples. This is the case, for example, for Richard Dawkins who, bearing the Darwinian 
good news, does so with the help of a computer simulation where creatures known as 
“biomorphs” evolve on a computer screen by means of genetic algorithms. There is 
nothing here that biologists are not aware of, no new biological fact apart from an 
unsurpassable illustration of Darwinian principles. However, the fact that ever more 
surprising and complex biomorphs appear in a deliberately simplified succession of 
selection, reproduction and mutation, while based on well-known mechanisms, just 
illustrates how this process works and works well. If a picture is worth a thousand 
words, this is all the more true of a computer simulation, especially when it is highly 
coloured and have a “sexy” appearance on the screen. Only informatics can reproduce 
a near infinity of elementary mechanisms in a confined space and time and reach the 
surprising although “well-known” outcome in a decent time. I would guess that the 
cellular automata IMMSIM (immune simulation) model developed these last 15 years 
by Celada, Seiden and Kleinstein [5, 21] among other roles, fulfils this very important 
pedagogical one, to explain and illustrate the processes of “immunization” and 
“memory of previous antigenic exposure”. Biologists are not really stunned by what 
they see, but simply happy to “verify” it and to exploit this software support for peda-
gogical purposes.  

Additionally, computer platforms and simulations can, insofar as they are suffi-
ciently comprehensible, flexible, quantifiable and universal, be used more “experi-
mentally” by the biologist, who will find in them a simplified means of simulating 
and validating their qualitative understanding of biology. Cellular automata, Boolean 
networks, genetic algorithms and algorithmic chemistry are excellent examples of 
software that have been parameterised and used to produce and test different natural 
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phenomena. The predictive power of these software can vary from very qualitative 
(their results show very general trends similarly present in the real world) to very 
quantitative (the numbers produced by the computer may be compared to those pro-
duced by the real phenomena which we are seeking to model). Even in their most 
qualitative form and simply due to the fact that they need to be translated into an 
algorithmic structure, these programs often allow a deep and careful examination of 
those mechanisms known to be responsible for observed patterns of behaviour. The 
needed “explicitation” and the writing down in an algorithmic structure of these 
mechanisms is already the guarantee of an advanced understanding accepted by all. 
Algorithmic writing is an essential stage in formalising the elements of the model and 
in rendering them less subjective. John Holland wrote about one definitive virtue of 
computer models: “The assumptions underlying the predictions are made explicit, so 
others can use or modify the assumptions enriching the overall enterprise” [19].  In a 
commentary very recently published in “Nature” and entitled “Can computers help to 
explain biology” [4], we can read the following extracts: “Today, by contrast with 
descriptions of the physical world, the understanding of biological systems is most 
often represented by natural-language papers and text books. This level of under-
standing is adequate for many purposes (including medicine and agriculture) and is 
being extended by contemporary biologists with great panache. But insofar as biolo-
gists wish to attain deeper understanding, they will need to produce biological knowl-
edge and operate on it in ways that natural language does not allow ….  Biology 
narratives of cause and effects are readily systematizable by computers” 

Although algorithmic writing is less demanding than mathematical writing (quali-
tative agents found in agent-based models or in cellular automata are less precise than 
the quantitative variables found in differential equations), it requires a great degree of 
rigour and thus a much sharper clarification of various mechanisms than is found in 
biological literature in versions still quite ambiguous. The more the model allows to 
integrate what we know about the reality reproduced, the detailed structures of objects 
and relationships between them, the more the predictions will move from “tenden-
tious” to quantitative and precise and the easier it will be to validate the model ac-
cording to Popper’s falsificationism, the way in which physicists wish to see biology 
to evolve. Still more important, new original mechanisms may be discovered, as it is 
their multiple iterations in time and space, only made possible through the computer, 
which allows to understand how they underlie the observed emergent behaviour. And 
this is indeed the territory of “emergent” phenomena and functionalities that only, in 
addition to nature, software can produce. In the 1950’s, when Alan Turing discovered 
that a simple diffusion phenomenon, propagating itself at different speed, depending 
on whether it was subject to a negative or positive influence, produces zebra or alter-
nating motifs, he had a considerable effect on a whole section of biology studying the 
genesis of forms (animal skins, shells of sea creatures). When Kaufmann discovered 
that the number of attractors in a Boolean network or a neural network has a linear 
dependency on the number of units in these networks, these results can equally well 
apply to the number of cells expressed as dynamic attractors in a genetic network or 
to the quantity of information being stored in a neural network. When some physicists 
recently observed a non-uniform connectivity in many networks, whether social, 
technological or biological, showing a small number of nodes with a large number of 
connexions and a greater number of nodes with far fewer, and when, in addition, they 
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explain the way in which these networks were constituted in time, again biology is 
clearly affected. When a idiotypic network growing in a real shape space spontaneous 
separates this space in a “immune” and a “tolerant” zone, although the concentration 
update mechanism is everywhere the same [3], again this result is far from expected 
and highlight in new ways the fundamental self/non-self distinction of immunology. 
And whatever experiment has surprising outcome, scientists will show their face with 
great expectation. When Perelson et al [26] explain by a simple mathematical model 
the antagonistic population dynamics of CD4 T cells and HIV virus and qualitatively 
replicate the long life time of T cell despite the huge presence of virus, again the im-
pact is important. Although still to be construed in a qualitative way, the reproduction 
of these phenomena by software means help to unveil the underlying mechanisms 
giving rise to them.  

Computer language, although very rigorous, offers more flexibility than any ma-
thematical language. The computer can replay certain scenarios of biological evolu-
tion which have taken place over millions of years endlessly, without the programmer 
having to resort to gnawing at the mouse. This allows the scientist to test several hy-
potheses, retaining only that one which resembles the current situation most closely. 
The programmer creates new worlds, worlds which evolve on their own and he can, 
as necessary, select those which are worth allowing to evolve somewhat. The compu-
ter suggests a result and the scientist adapts to it, looking to understand the result and 
ensuring that it is not a simple artefact linked to the intrinsic limitations of the method 
of inputting and processing digital information. At last, the “Grail” to reach for any 
scientific modelling attempt remains the quantitative prediction, a prediction so accu-
rate that a measuring device will be able to validate the modelling by comparing what 
it measures with the model prediction. Several theoretical immunologists [26, 11, 12] 
force the way to go beyond qualitative descriptions and to quantify the immune sys-
tem behaviour through mathematical and computer simulation approaches. As Rob 
De Boer [11] claims: “Theoretical immunology is maturing into a discipline where 
modelling helps to interpret experimental data, to resolve controversies, and – most 
importantly – to suggest novel experiments allowing for more conclusive and more 
quantitative interpretations”. Nevertheless, all other sorts of modelling whatsoever 
qualitative, on the road to the ideal most predictive one and for reasons mentioned 
above, like “pedagogy“ or the testing of “emergent phenomena”, are equally worth 
the effort. 

Since there is no reason why immunologists should be surprised or disagree with 
these previous arguments, what would they gain in collaborating with researchers in 
computer science well decided at contributing to this modelling enterprise? I see one 
strong reason that I will expand below. The immune system is a very complex one, 
full of chemical actors interacting in complicated ways. These last twenty years com-
puter scientists have been well trained for software simulation of complex systems by 
learning and practising the “Object Oriented (OO)” tricks, tricks that biologists (natu-
ral scientists in general) still seem to be hesitant (mainly because not educated to) to 
acquire and master. The OO software are simultaneously easy to read and to under-
stand (even for non programmers), simple to build, easy to modularize, to maintain 
and to adapt. New software tools entirely rely on Object-Orientation (OO), essentially 
OO programming languages (C++, java, .Net, Python), UML and Design Patterns. 
From its origins, OO computation has simplified the programming of complex reality 
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by allowing the programming to come closer to the way human perceives this reality 
(the first OO language was indeed called “SIMULA”) instead of being constrained by 
the processor set of elementary instructions. There is a today trend which makes more 
and more possible to abstract software engineering from the processor by naturally 
using high-level human concepts and percepts, simply mapping the actors of the pro-
blem on the bricks of the algorithm. Even the way these concepts are cognitively 
organized (generalization, semantic relations) can be transposed as such in the soft-
ware. This goes together with the increased use of the standard visual modeling  
language called UML [16, 24]. UML proposes a set of well defined diagrams (tran-
scending any specific OO programming language) to naturally describe and resolve 
problems with the high level concepts inherent to the formulation of the problem. It is 
enough to discover and draw the main actors of the problem and how they do mutual-
ly relate and interact in time to build the algorithmic solution of this problem. Depart-
ing from these diagrams, more and more automatic code generation tools appear on 
the market, contributing to make this whole computational frame even more appeal-
ing to biologists. On the other hand, Design Patterns (DP) [18, 17, 24] are very con-
venient and well experimented software recipes to face and resolve programming 
difficulties often encountered during the development of complex software. The next 
section of this paper will illustrate how immune knowledge is already intrinsically 
OO and how accordingly UML and DP should ease the construction of OO models of 
immune system. In the third section, these OO tricks will be put into practice in a very 
simplified model of the immune clonal selection and memory, limited to B cells, 
antigens and antibodies.  

2   UML and Design Patterns 

Obviously, it is impossible to even briefly give an overview of the hundred modeling 
symbols composing the 13 UML diagrams. A very simple and didactical introduction 
to UML is the purpose of Folwer’s book [16]. However these symbols are far from 
being all necessary and a couple of days is enough to acquire those allowing the con-
ception of Class, State and Sequence diagrams, the most useful ones for the simula-
tion of biological systems. For didactics’ sake, two excerpts of the Janeway et al’s 
immune system bible [20] will be mapped onto the corresponding UML class dia-
gram. “The antigen-specific activation of these effector T cells is aided by co-
receptors on the T-cell surface that distinguish between the two classes of MHC 
molecule; cytotoxic cells express the CD8 co-receptor, which binds MHC class I 
molecules, whereas MHC Class II molecules specific T cells express the CD4 co-
receptor, which has specificity for MHC Class II molecules”.  In figure 1, the link 
between the classes “T cell” and “Receptor” means a “composition” relationship, the 
receptor being physically and intimately part of the T cell, while the arrow joining the 
classes “MHC class I” to “MHC Molecule” means a inheritance or specialization 
relationship, class I and class II being two sub-classes of MHC molecule. The corre-
spondence of figure 1 with the text should be obvious. 
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MHC MoleculeReceptorT cell 11

CD8 MHC Class I

111 1

CD4 MHC Class II

111 1

 

Fig. 1. Extract of page 30 of [20] mapped onto a UML class diagram 

Another extract is: “T cells are activated to produce armed effector T cells when 
their encounter their specific antigen in the form of a peptide:MHC complex on the 
surface of an activated antigen-presenting cell (APC) … The most important APC are 
the highly specialized dentritic cells … Macrophages can also be activated to express 
co-stimulatory and MHC class II molecules … B cells can also serve as APC in some 
circumstances... Dentritic cells, macrophages and B cells are often known as profes-
sional antigen presenting cells” 

B cell Macrophage T cell receptor

CD4

CD8

MHC 
Molecule

Antigen Antigen Presenting 
Cell

MHC class I

Dentritic

MHC class II
Professional APC

 

Fig. 2. Extract of page 319 of [20] mapped onto a UML class diagram 

In figure 2, looking attentively, the classes CD4 and CD8 are represented as “asso-
ciation classes” between APC and MHC, since they interact with APC only when 
these later express on their surface a MHC molecule. One can see how the second 
diagram is aimed at completing and refining the previous one by specifying the prop-
erties of the T cell receptors and how they do interact with the APC. These two class 
diagrams still are quite incomplete but need to be taken as simple examples of how 
UML symbols allow a more formal and computational language, derivable from the 
qualitative language of immunology, in the way to computer simulations.   

In many immune system simulations [1, 6, 7, 21] (included the simple one to be 
presented in the next section), it is the immune response to pathogens by either T cells 
or B cells followed by the memorization of this response which is under investigation. 
Almost all simulations consider a succession of B or T cell states: departing from a 
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naïve state, prior to the antigen encounter, to then reach an “active” state once the 
antigen is encountered. In this active state, the cell enters in a process proliferation 
successively producing new clones. Following a certain number of duplication, part of 
the resulting T or B clones turn into an effector state where they can either produce 
antibodies (in the case of B cells), kill infected cells (in the case of cytotoxic T cells), 
suppress or regulate the action of other cells (in the case of helper T cells). This trans-
formation process is at the origin of the immune response to the infecting pathogen. 
The remaining part of the T or B clones is transformed into memory cells. While 
immune memory is still a topic of vivid investigation, B and T cells in this new state 
seem to handle the memory role mainly because their death rate becomes much 
smaller than their ancestor. Additionally, back to the naïve state and ready in their 
turn to be activated by an antigen encounter, they appear to be faster to switch to the 
effector state and even to act more intensively. This whole process can be simply 
illustrated by the following state-transition UML diagram.  

 

Fig. 3. A basic UML state-transition diagram illustrating the minimal cell transitions at the 
basis of the immune response and the memorization of this response 

The two black disks above and below represent the birth and the death of the con-
sidered cell. A state transition diagram theoretically only concerns one unique object 
and its succession of states while, in this example, as a result of the cloning process, 
the active, the memory and the effector cells need to be different objects. Still, it is 
interesting to formally capture in one unique diagram the idea that in order to become 
memory or effector, a cell has to divide a certain number of times (in this state dia-
gram and in our simulation explained below a clone labeled N disappears to give birth 
to two clones labeled N-1 and so forth until N=0), only the resulting clones being able 
to assume this new role. Another principle illustrated by the diagram is the probabilis-
tic transformation of a clone into either a memory or an effector cell. In certain simu-
lations [21], the switch to the memory state takes place before the effector state and as 
an alternative to it, while in others [6, 7] only a subset of effector cells will be 
changed into memory cells. There is another problem with this state transition dia-
gram, still resulting from the cloning process. Although represented in the diagram by 
a transition of the memory cell back to the naïve state and although a memory cell 
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could also become in its turn “active” and “effector”, the states through which it tran-
sits might be quantitatively different than in the case of the first response. To resolve 
some of these problems, the third very useful UML type of diagram, the sequence 
diagram, useful for depicting the interaction between objects in time, can come to the 
rescue, like illustrated below.  

anAPC : 
APC

aLympN : 
Lymphocite

aLympN-1 : 
Lymphocite

aSecondLymp0 : 
Lymphocite

aFirstLymp0 : 
Lymphocite

1: recognize

3: clone

4: clone

6: clone

2: turnActive

5: turnMemory

7: turneffector

prob = p

prob = 1-p

 

Fig. 4. A UML sequence diagram clarifying some of the ambiguities of the state diagram repre-
sented in fig.3. Here three more lymphocyte objects are considered, clones of the first one.  

Since the publication of the “Gang of Four” Design Pattern book [18] (classifying, 
explaining and implementing 23 design patterns), the implementation of these soft-
ware OO recipes have turned out to be one of the most popular and prolific field of 
today software technologies. They are not as easy to grasp as the basic principles of 
OO or the basic symbols of ULM, but they are worth the learning since their imple-
mentation testifies of an accurate understanding of the problem to be handled and 
equally well of the way to map it onto an OO architecture that guarantees readability, 
flexibility and stability (despite this adaptability). In substance, what DP aim at is to 
preserve some large space of development variability without affecting the rest of the 
simulation. Some of them will be presented in the next section while describing the 
minimal immune system simulation. However, the UML class diagrams discussed 
before already allow introducing some simple and tricky DP. Among them, the “pro-
totype” DP has to do with the way a new object is created by cloning an existing one 
(a central aspect of the diagrams above). This DP teaches you for instance not to con-
fuse a shallow copying (a T cell would be cloned without equally cloning the antigen 
receptor it is composed of) with a deep copying (where the cloning of the container 
implies the cloning of the content). Once a clone is born and provided many of them 
are, it is important, for obvious memory reasons, to separate what can be store only 
once in memory from what has to be distributed distinctively among the clones. This 
is the role of the “flyweight” DP, looking for common parts in the description of 
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many objects. It forces the programmer and the immunologist to have a clear idea of 
what is unique to each clone and what is common to all of them (for instance, if the 
genetic sequence of their receptor is unique, it can be stored only once in the original 
lymphocyte and make all clones refer to it). The discussion about this DP should also 
result in a simulation choice between a “type-based simulation”, for which an object 
is a cellular type and a key attribute is its concentration and an “instance-based simu-
lation”, for which there are as many objects as cellular instances of any type. The 
concentration of a type is now derived from the number of explicit objects really 
present in memory and acting during the simulation. Three other DPs are roughly 
illustrated in the figure below.  

APCSubClass1 APCSubClass2 APCSubClass3

MHCAPC

MHC class I MHC class II

 
The “bridge DP” 

 

BasicCellFunctionality

AntigenReceptor AntigenPrese
ntation

Effectiveness

CellFunctionality

Decorator

0..1

11

0..1

 

The “Decorator DP” 
 

Naîve Active Memory Effector

StateLymphocite

 
The “State DP” 

Fig. 5. Three among the most useful Design Patterns: The “bridge”, the “Decorator” and the 
“State” 

The “bridge” DP aims at keeping clearly separated in the conception and the soft-
ware two different motivations for the specialization of classes. In the figure, APC 
can give rise to more specific forms of them and, independently, MHC molecules can 
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be of different sub-classes, indifferently part the APC cell. The difference this DP 
points out with the previous solution presented in fig.1 should be clarified and re-
solved by immunologists. The “decorator” DP allows separating a fundamental char-
acteristic of a cell from a set of added functionalities (the decorators) which can vary 
from a cell to another. It is a much flexible alternative to the use of subclassing. Func-
tionalities can be added or removed simply by adding or deleting wrappers around an 
object. For instance, one cellular object could present a certain form of antigenic re-
ceptor but with no capacity to present antigens. Another cellular object could just be 
effective in a specific way while a third instance of cell could simultaneously present 
antigen in a given way and be effective in another. Finally, the “State” pattern is a 
direct result of the state-transition diagram such as the one presented in figure 3. Each 
state gives rise to one subclass and all aspects and functions specific to this state 
(what the cell is doing while in this state, what are the possible transitions from this 
state) are installed in this subclass. We will turn to that last DP in the next section. 

Although I had many times the opportunity to defend the ideas of applying OO 
principles in biological simulations [2], I had an excellent surprise in discovering a set 
of recent publications by Irun Cohen (one of our immunologist guests at ICARIS this 
year), David Harel (the instigator behind the integration of the state-transition dia-
gram in UML) and Sol Efroni (who is developing the software solutions) in which the 
need of applying OO technologies for immune modeling was advocated with great 
confidence and impressive software realizations [13, 14]. Extracted from one of this 
paper [13]: “Interestingly, most of the experimental data in biology accumulates in an 
object oriented manner… Concerning the immune system, a significant amount of 
data exists about its cellular components but very little is known concerning the way 
these cells collaborate to function as a system…  Object orientation fits the way we 
think, it fits the way the experimental data are collected and it seems suitable for 
coping with the challenge of understanding how biological objects collaborate to 
establish a system”.  I can’t agree more.  

3   An Elementary Clonal Selection Model 

The simplistic clonal selection and memorization model to be presented in this section 
is entirely derived from the Seiden, Cellada and Kleinstein IMMSIM software [5, 21]. 
It is even further simplified to only concentrate on three actors: B cells, antigens and 
antibodies. As such, it must not to be intended as any relevant attempt in a pure im-
munological perspective but rather as an illustration of how well UML diagrams and 
Design Patterns generally apply to this type of simulation. As illustrated in the three 
plots at the bottom of the next figure (above: showing the evolution of the B cell and 
antibody populations responding to the pathogenic stimulation and, below: the evolu-
tion of the pathogenic population), this simulation is able to reproduce the basic  
immune response to a pathogenic intrusion (the pathogen is destroyed by the com-
plementary antibodies) and the memorization of this response (the second time the 
same pathogen is introduced in the system, it is eliminated much faster).  
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Fig. 6. Above: UML class and state diagrams and below: simulation results of the elementary 
clonal selection model - evolution in time of the antibody, B cell and antigen concentration  



 Immune System Modeling: The OO Way 161 

After the first infection, a set of memory B cells is created with longer life time and 
able to react similarly to the second pathogenic intrusion. Like in IMMSIM, any cell 
is coded by means of a binary string. Affinity is based on Hamming distance and the 
simulation is done over a set of sites in a way similar to a cellular automata, except 
that the presence of neighborhood sites just allow the three immune actors to diffuse 
through this neighborhood. Instead of describing in more details the immunological 
aspects which just boil down to a subset of the IMMSIM simulation, it is more advis-
able here to limit the discussion to the OO aspects. The whole class diagram is hard to 
read but we will concentrate on some parts of it. Among the most biologically rele-
vant implemented Design Patterns in this simulation, there is for instance the “State” 
DP, where four subclasses: “Naïve”, “Plasma”, “Memory”, “Excited” inherit from the 
State class, this latter being connected by a composition link to the class B cell. These 
subclasses are responsible for 1) implementing the only possible transitions repre-
sented in the state-transition diagram below (for instance from “Naïve” to “Excited”) 
2) coding the specific behaviour of the B cell while being in this specific state (for 
instance a “Plasma” B cell can produce antibodies and a “Excited” B cell can dupli-
cate). The “Factory” DP is present and responsible for the creation of instances of the 
three immune actors treated here. For instance, in the case of a binary string coding of 
the cell, the factory classes care for the generation of this string. Additionally, there is 
a key connection between the “B cell” factory and the “Ab factory” since B cell of 
one specific type can only produce antibodies of this same specific type.   

When programming in an OO way, programmers aim at encapsulating as much as 
possible the parts of the simulation which might be subject to a larger variability so as 
to keep the coding process more stable and linear.  The “Template” DP keeps isolate a 
functionality which is central for the whole simulation to run, but which is susceptible 
of different implementations. This pattern was used here for implementing the affinity 
between antigens and antibodies. One possibility for this affinity function, like done 
in IMMSIM and in many idiotypic networks simulations [3, 7, 26, 27, 15] lies in the 
use of binary string and the Hamming distance between them. Another possibility is 
the use of n-dimension shape space [27]. Still other possibilities could be less abstract 
and take into account more biological details. Nevertheless, whatever affinity version 
adopted, all the rest of the simulation remains unaffected i.e. the proliferation of B 
cell and antibodies just depend on the presence of affinity between them and a given 
antigen. We easily understand how immune simulation could give rise to many in-
stances of this same “template” DP in different places of the code, since many 
mechanisms composing this simulation are subject to alternatives. This has not been 
considered here, but this same DP could leave free and well separate from the rest of 
the code the way any cell grows in concentration, the way it dies, the way it diffuses 
in space, etc…  

4   Conclusions  

OO languages, UML and Design Patterns all together allow to tackle the simulation 
of the immune system in a much more comprehensible, adaptable and effective way. 
Through the use of UML diagrams, the necessary communication between program-
mers but also between programmers and biologists is facilitated. Through the use of 
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Design Patterns, many recipes, well tested and validated by many programmers be-
fore, can easily be transposed and adapted to the simulation at hand. Additionally, 
large space of freedom is provided for effortlessly testing different hypothesis without 
compromising the rest of the code. As a matter of fact, OO technologies have invaded 
the software world since programmers are more and more engaged in the develop-
ment of complex software, their complexity being due to the presence of many actors 
interacting in subtle ways.  Think of “Amazon”, “traffic regulation”, “meteorology”. 
Without any doubt, the immune system exhibits this kind of complexity.  

Although programmers will certainly benefit from OO technologies when conceiv-
ing and writing the code of immune system actors and interactions, biologists, even 
those, still in majority, reluctant to software simulation, might also see some interest 
in the formalism underlying UML diagrams. The use of the diagrams goes not with-
out a deep clarification and disambiguation of the reality to model. To draw a class 
diagram, a biologist will need to clarify whether a “subclass” link between a type of 
cell and another type is really a subclass in the OO sense. For that he will need to 
clearly state what is definitely common between these two types and why does he 
really perceive the second as a subclass of the first. The “prototype” and “flyweight” 
patterns will force him to a deeper understanding of the cloning process. The “State” 
patterns will force him to a better explicitation of what is distinct between cells when 
they find themselves in distinct states. The “Bridge” patterns will help him to relate or 
not the many taxonomies which fulfill immunology books and how to relate them. 
The leaders of the software world (I am referring here to the “Object Management 
Group”) insist more and more in assimilating programming with modeling i.e. in 
relaxing the coding part to concentrate more on the modeling part. In doing so, they 
warmly advocate the increased use of UML diagrams and Design Patterns. On ac-
count of the extraordinary software developments that the adoption of these new 
strategies has allowed, I don’t see any reason why immunologists interesting in com-
puter simulation should remain immune to this software propaganda and campaign. 
ICARIS conferences might be ideal opportunities for these immunologist hackers to 
meet and to confront their diagrams and patterns once a year.  
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Abstract. This paper highlights degeneracy as being an important
property in both the immune system and biology in general. From this,
degeneracy is chosen as a candidate to inspire artificial immune systems.
As a first step in exploiting the power of degeneracy, we follow the con-
ceptual framework approach and build an abstract computational model
in order to understand the properties of degenerate detectors free of any
application bias. The model we build is based on the activation of TH cell
in the lymph node, as lymph nodes are the sites in the body where the
adaptive immune response to foreign antigen in the lymph are activated.
The model contains APC, antigen and TH cell agents that move and in-
teract in a 2-dimensional cellular space. The TH cell agent receptors are
assumed to be degenerate and their response to different antigen agents
is measured. Initial observations and results of our model are presented
and highlight some of the possibilities of degenerate detector recognition.

1 Introduction

In a previous work [1] we outlined an approach to exploiting immune ideas not
yet used for artificial immune system (AIS) inspiration. We concluded that even
though competing and conflicting immune theories are used to inspire AIS, these
AIS are still able to perform their tasks well. However, it was observed that many
of these AIS were designed with too much of an engineering approach, failing
to adequately capture the immunological processes on which they were built.
In addition, Hart and Timmis [2] state that current AIS do not offer sufficient
advantage over other paradigms available to the engineer. To address this it was
suggested that alternative immune ideas should be actively investigated in order
to identify useful immune processes that could inspire unique and powerful AIS.
As an example of an alternative view of the immune system, we presented the
ideas of Cohen [3,4,5] who describes the immune system as a complex adaptive
system, the role of which is body maintenance. It was clear from this view that
there are many ideas that could inspire the development of new AIS, and the
example of receptor degeneracy (the ability of an antigen receptor to respond
to different ligands [6]) was highlighted. In order to exploit such an idea we
suggested adopting a suitable methodology such as the conceptual framework
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approach [7], which promotes the use of an interdisciplinary set of stages to
develop and analyse bio-inspired algorithms in a more principled way.

As a continuation of these ideas we present in this paper the initial stages of
our work aimed at exploiting the notion of degenerate immune receptors for use
in AIS. By following the conceptual framework approach [7], we have used bio-
logical detail drawn from the immunological research literature to build a com-
putational model based on the process of TH cell activation in the paracortex
of a lymph node, in which the TH cell receptors are assumed to be degenerate.
We believe that the model we have developed is a novel tool with a richness
of behaviour to enable the investigation of abstract degenerate detectors. Ulti-
mately this investigation aims to generate enough insight to extract algorithmic
design principles that will benefit the development of an AIS for pattern classi-
fication. It is noted that the degeneracy issues we explore here are not explicitly
connected to the ideas of immune networks.

2 Degeneracy

Degeneracy is a property that is not only seen in the immune system, but,
according to Edelman and Gally [8], is a ubiquitous biological property present
at most levels of biological organisation. They define degeneracy in biology as:

“the ability of elements that are structurally different to perform the
same function or yield the same output”

Examples they give include the genetic code, where different sequences can en-
code the same polypeptide, and human language, where there many different
ways to transmit the same message. They go on to argue that the omnipresence
of degeneracy in biology is a result of it being conserved and favoured by natural
selection. Additionally, it is noted that degeneracy in biological systems is typi-
cally accompanied with complexity, and it is suggested that degeneracy plays a
key role in complex systems.

Parnes [9] states that even though degeneracy is a term that has been used
in immunology for the last 35 years, it has escaped rigorous definition. For our
work, we have adopted the definition given by Cohen [6], which describes antigen
receptor degeneracy as the:

“capacity of any single antigen receptor to bind and respond to (recog-
nize) many different ligands”

Cohen [6] reports that the main consequence of the degeneracy of antigen recep-
tors is poly-recognition, whereby a single lymphocyte clone can recognise different
antigen epitopes. This causes a problem for the traditional clonal selection theory
view of immunology [10] that relies on the strict specificity of lymphocyte clones.
In [9], Parnes notes that in immunology there is a notable confusion between the
ideas of ‘degeneracy’, ‘cross-reactivity’ and ‘promiscuity’. The interested reader
is referred to the Parnes [9] article for a detailed description of this issue.
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As an example of the power of receptor degeneracy, Cohen [6] discusses the
example of colour vision in the human eye. The eye possesses millions of colour
receptors called cones of which there are only three types (red, green and blue).
These receptors are degenerate, each responding to broad range of light wave-
lengths that overlap between the different cone types. The human brain, however,
is able to perceive thousands of specific different colours, thus colour specificity is
not encoded by the cones, but achieved via subsequent neuronal firings. Likewise,
Cohen [6] envisages a similar recognition scenario in the immune system.

2.1 Exploiting Degeneracy

The description of degeneracy just presented pitches it as an important, advan-
tageous and powerful property at all levels of biological organisation including
the immune system. Based on this, we have chosen to investigate the property
of degenerate detectors to inspire AIS development. At present there are no in-
stances within the AIS literature where degenerate detectors have been directly
addressed, although degeneracy is an issue that is both being discussed [6,9,11]
and modelled [12] by immunologists. It is clear that incorporating degenerate
detectors into AIS will affect the dynamics of the immune algorithm. Instead of
recognition being the responsibility of a single detector, recognition will emerge
from the collective response of a set of detectors. The assumed benefit of an
AIS with degenerate detectors will be to provide greater scalability and gener-
alisation over existing classifier AIS. Greater scalability can be achieved as the
capacity to discriminate patterns collectively by a set of degenerate detectors
should be greater than by single detectors. Thus, as the number of patterns to
be recognised increases, the number of detectors needed in an AIS with degen-
erate recognition should be less than that of existing AIS. Better generalisation
ability to recognise unseen patterns could be achieved as similar patterns should
produce a similar pattern of response from the set of detectors.

To investigate and exploit degeneracy for the benefit of AIS we follow the
approach previously outlined by us in [1], which advocates the use of the con-
ceptual framework approach [7] to bio-inspired algorithm design. Following this,
and as a first step before building an AIS, we investigate the biology free of any
algorithmic application bias via a process of computational modelling. Based on
the notion that antigen receptors of lymphocytes are degenerate, the aim of this
modelling exercise is to assess the computational impact of lymphocyte antigen
receptor degeneracy on epitope/antigen recognition. This includes investigating
the recognition properties of sets of degenerate receptors when presented with
sets of target antigens. In order to build such a model we first needed to iden-
tify a biological process where recognition by degenerate receptors might take
place. An investigation of suitable immunological literature identified the lymph
nodes as suitable candidate as they are the immune organs where the adaptive
immune response to antigen in the lymph are triggered [13]. Biological details of
the lymph node and TH cell activation follow in section 3, which are then used
in the design of an abstract computational model of degeneracy in a lymph node
presented in section 4.



A Computational Model of Degeneracy in a Lymph Node 167

3 Lymph Nodes

Lymph nodes are examples of the secondary, or peripheral, immune organs,
which are the sites where the adaptive immune responses to foreign antigen
are initiated. The human body contains many hundred lymph nodes situated
at various points in the lymphatic system (lymphatics). They are rich in both
lymphocytes and antigen presenting cells (APCs) and so provide an environment
where immune responses to antigen in the lymph may be triggered and develop.
They thus act as filters of the lymph before it returns to the blood, capturing
and responding to foreign antigen that have entered the body via portals of entry
such as the skin [14,13].

Lymph nodes are small bean shaped structures connected to the lymphatics
via a number of afferent lymph vessels through which lymph enters the node,
and a single efferent lymph vessel through which the lymph leaves the node.
Each lymph node is also connected to the circulatory system via a lymphatic
artery and vein. It is through the lymphatic artery that lymphocytes (mainly
naive T and B cells) enter the lymph node. As lymph drains though the node,
any antigen present is captured and processed by APCs for presentation to
lymphocytes, which consequently initiates the chain of events that results in
the adaptive immune response. Antigen may also be transported into the lymph
node by APCs, called dendritic cells, that have captured the antigen close to the
portal of entry and then migrated to the node via the lymphatics.

The lymph node can be functionally separated into three distinct areas each
supporting a different cellular environment: the cortex, the paracortex and the
medulla. The cortex supports supports mainly B cells and various APCs
(macrophages and dendritic cells), the paracortex supports mainly naive TH
cells and dendritic cells, and the medulla contains mostly lymphocytes including
the antibody producing plasma cells. As lymph drains through the lymph node,
it slowly percolates though each of these three regions. In the paracortex, the
dendritic cells trap and process any foreign antigen and presents it via MHC-
II to the naive TH cells resulting in their activation. These TH cells then play
their part in activating B cells on the edge of the paracortex leading to B cell
proliferation. This proliferation takes place in the germinal centres of the cortex,
and results in antibody producing plasma cells, some of which migrate to the
medulla. This whole process results in the lymph leaving the lymph node being
enriched with antibodies and lymphocytes [14].

The segmentation of the lymph node into the three different areas is due to the
presence of a particular variety of signalling molecules called chemokines. Both
naive TH cells and dendritic cells activated due to exposure to antigen, express
the same cell-surface receptor for a chemokine produced only in the paracortex.
This has the effect of attracting both of these cell types into the same area,
thus enabling their interaction. Likewise, naive B cells are concentrated in the
cortex as they express a receptor for a different chemokine produced only in the
cortex. Once TH and B cells have been activated by antigen/APCs, they lose
their chemokine receptors from the cell surface, and therefore migrate towards
each other. Thus the structure of the lymph node keeps each of the T and B



168 P.S. Andrews and J. Timmis

cells populations in close proximity to the appropriate APCs and also apart from
each other until they are in a state in which they are ready to interact with each
other [13].

3.1 TH Activation in a Lymph Node

Naive TH cells become activated by APCs presenting MHC-II to which antigenic
peptides are bound (MHC-P). In order for this activation to take place, a certain
level of stimulation is required, an issue determined by two concepts known as
affinity and avidity. Affinity is simply the strength of binding between a single
binding site (e.g. T cell receptor) and a single ligand (e.g. an MHC-P complex).
It can be quantitatively measured using a dissociation constant Kd, which is the
concentration of a molecule X required to occupy half of the combining sites
of another molecule Y present in a solution. Hence, a smaller Kd represents a
stronger or higher affinity [13]. Affinity differs from avidity, which is a measure
of the strength of binding between molecules or cells when there is more than
one binding site present [15].

T cells become activated when the concentration of MHC-P complexes on an
APC reaches a sufficient threshold level [16]. In other words, T cells become
activated when an avidity threshold is met, and so T cell activation is affected
by both the affinity between the T cell receptor and antigenic peptides presented
by the APC, and the concentration of these ligands present. It is possible, there-
fore, for an APC presenting high concentration of MHC-P complexes with weak
affinity to activate a T cell, and conversely an APC presenting a low concen-
tration of MHC-P complexes with high affinity not to activate a T cell. Once a
naive T cell has become activated it initiates a process of cellular proliferation
and differentiation into effector T cells that can perform their allotted immune
functions. In the case of effector TH cells, they play a crucial role in activating
both B and TC cells which are then in turn able to neutralise pathogens.

4 Degenerate Receptor Lymph Node Model

The previous section described how the activation of naive TH cells in the para-
cortex of the lymph node provides the initial recognition event of the adaptive
immune response to lymph-borne antigen. The computational model that is de-
scribed in this section aims to understand how this recognition event is affected
by notion that the antigen receptors of TH cells are degenerate. Specifically, the
model is an abstract representation of the activation of TH cells in the paracor-
tex of the lymph node based on the biological detail presented in section 3, and
the assumption that the TH cell receptors can bind to more than one antigen
epitope.

4.1 Overview

The first step in building the model was to extract the relevant details from
the biology to enable the identification of a suitable model type. The process
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of TH cell activation requires the interaction of three immune agents: dendritic
cells (which we shall call APCs from this point forth), foreign antigen and TH
cells. For these agents to interact, they must be spatially close and able to move
appropriately. From a computational point of view, these immune agents can
be considered as specific agent types within a model, each with its own set of
movement and interaction behaviours. Based on these observations a two-layer
cellular automaton (CA) type approach in which APC, antigen and TH cell
agents move and interact was chosen as the modelling tool. This was deemed
suitable as in a CA each element of the system is modelled individually in a
physical space. Having chosen to use this approach, it was possible to reduce
some of the complexity present in the real lymph node by reducing it to 2
spatial dimensions. Whilst reducing the spatial complexity of the system, this
still enables the elements of the system to move in a non-trivial way.

The approach we have taken to model the immune agents and their movement
due to a chemokine, is similar to that of Maree et al. [17] who have modelled
the movement of Dictyostelium disciodeum amoebae due to a chemical gradi-
ent. They use a hybrid CA/partial differential equation model, where the CA is
used to represent the physical details of the amoebae and the partial differential
equation models the chemical gradient. In our model, two separate layers exist: a
chemical space and an agent space. The chemical space models the action of the
chemokine produced by the paracortex to attract naive TH cells and APCs pre-
senting antigen. The agent space provides the environment where the agents of
the model can move and interact. Both layers are implemented as 2 dimensional
grids of cells, with the agent space placed directly on top of the chemical space.
Both grids therefore share the same dimensions and co-ordinate system, so for
example grid reference (2, 3) in the agent space would relate directly to the same
grid reference in the chemical space. The contents of the cells in the chemical
space are integer values representing a level of chemokine, and the contents of
the cells in the agent space can either be one of the agent types or empty. See
Fig. 1 for pictorial example. Wrap around occurs between the right and left edges
of the cellular spaces, but not at the top and bottom. This produces an effect
whereby the top of the space represents the afferent lymph vessels where lymph
enters the node, and the bottom of the space represents the efferent lymph node
through which the lymph leaves the node. Time is represented in the model by
discrete steps called iterations, and when the model is simulated it runs for a
user defined number of iterations. At each model iteration all the cells in the
chemical space update, followed by agent movements in the agent space, and
lastly agent interactions.

4.2 Chemical Space

Upon initialisation of the model each cell in the chemical space is set to an in-
teger value representing a chemokine concentration. These values are randomly
generated integers between 0 and a user defined maximum value. At each iter-
ation of the model, the chemokine values update according to a diffusion rule,
whereby the value at each cell is shared out equally to all the its neighbours.
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The neighbourhood used for this comprises nine cells: the original cell and the
eight Moore neighbours (the cells to the north, northeast, east, southeast, south,
southwest, west and northwest) shown in Fig. 2. When applying the diffusion
rule the chemokine value for a cell is integer divided by 9 and the resulting value
shared between the neighbours. The remainder, R, from this division is then
shared out randomly between the neighbours by generating R random numbers
between 0 and 8 inclusive that relate to the positions of the nine neighbours,
and incrementing the value of these neighbours by 1. An example of applying
this diffusion rule for a cell with a chemokine value of 95 is shown in Fig. 3.
Here, each neighbour is first assigned a value of 10 from the integer division
step, then five random numbers (e.g. 0, 4, 5, 5 and 7) are generated resulting in
the allocation of the remainder, R, to random neighbours. When applying this
rule to the entire grid of cells in the chemical space, all cells are initially set to
a value of 0 then the diffusion rule is applied to each cell in turn using the old
chemokine value of that cell.

The effect of the diffusion rule over a number of iterations is to smooth the
chemokine concentration over the entire chemical space, whilst leaving a level of
stochasticity at the local level. This stochasticity is important as it provides a
small amount of randomness to the agent movements in the model. To simulate
the production of chemokine in the paracortex, there is a user defined parameter
determining an area in the middle of the chemical space in which chemokine can
be added. To provide a stable chemokine gradient, the level of chemokine that
is lost at the top and bottom of the chemical space during an update (due to
no cell wrap around) is counted and re-injected in the paracortex region. This
re-injection takes place once an update of the entire chemical space has taken
place, and the paracortex cells to which the chemical is added are determined
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Fig. 1. The two layers of the cellular space with typical values



A Computational Model of Degeneracy in a Lymph Node 171

NW N NE

W E

SW S SE

C

Fig. 2. The Moore neighbourhood where C = central cell, N = north, NE = northeast,
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Fig. 3. An example of the stages involved in the diffusion rule in the chemical space

by random numbers. The chemokine gradient produced by these rules can be
seen visually in Fig. 4, where the value of chemical is represented by a greyscale
value with black being the lowest, and white the highest. Here, a lighter band
can be seen in the centre of the space representing the paracortex region.

4.3 Agent Space

Cells in the agent space layer of the model can be either empty or contain
one of the following agents types: antigen, APC or TH cell. Upon initialisation,
agents are placed at random positions in the agent space. When updating, all
agents within the space move according to rules defined by their agent type.
This is followed by all agents interacting with other agents present in their
Moore neighbourhood, again according to the rules of their agent type. The
functionality of the three agent types, based on the biological details presented
in section 3, are described below in turn.

The antigen agents have associated with them a bit string that represents their
molecular shape. The movement of the antigen agents mimics the movement of
real antigen in the lymph node which drain through the node, entering at the
top through afferent lymph vessels and exiting at the bottom via the efferent
lymph vessel. The antigen agents, therefore, can only move down or sideways in
the agent space, i.e. movements to the east, west, south, southeast and southwest
neighbours. At each iteration, a random number determines which of the neigh-
bours the agent moves to. Once an antigen leaves the bottom of the agent space
it is automatically reinserted to a cell at the top of the agent space to mimic a



172 P.S. Andrews and J. Timmis

Fig. 4. A snapshot of the simulator user interface with a visual representation of the
agent space on top of the chemical space in the left panel

constant flow of antigen through the node. The antigen agents do not themselves
initiate any interactions with other agents, although APCs do interact with them
which is described below.

The APC agents can be in one of two states that dictate their behaviour: not
presenting antigen (naive) or presenting antigen (activated). All APC agents
start off in the naive state and move to the activated state upon ingestion of an
antigen agent. In the naive state, real dendritic cells (APCs) lack the receptor
for the chemokine produced in the paracortex, thus naive APCs in this model
move to a Moore neighbour determined by a random number at each iteration.
Once activated, real dendritic cells produce the chemokine receptor and move
towards the paracortex region. This is mimicked in the model by activated APC
agents consulting the chemical space level of the model, and moving to the
unoccupied Moore neighbour with the highest level of chemokine, thus following
the chemokine gradient. APC agents in both the naive and activated states
initiate interactions with antigen agents in their Moore neighbourhood. If the
APC is naive it ingests the antigen agent, thus removing it from the agent space.
Upon ingesting, the APC becomes activated, and an antigen concentration count
for that APC is set to 1. A peptide bit string is generated from the bit string
of the antigen that represents the peptide presented by real APCs via MHC
for recognition by TH cells. This peptide bit string is the same length as the
TH cell agent receptors in the model, and is generated as a sub-string of the
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antigen bit string that was ingested. If the APC agent is activated, it can ingest
further antigen agents it interacts with, depending on a model parameter that
determines how many antigen agents each APC is allowed to ingest. APC agents
also interact with naive TH cell agents, but this interaction is initiated by the
TH cell agent, and is described below.

All TH cell agents in the model have associated with them a unique bit string
that represents its antigen receptor. Like the APC agents, the TH cell agents can
be in one of two states that affect their behaviour: naive or activated. Again,
all TH cell agents start off in the naive state and move to the activated state
upon interaction with a suitable APC agent. Like activated dendritic cells, real
naive TH cells have the receptor for the chemokine produced in the paracortex,
thus the movement of naive TH cell agents in the model is the same as activated
APC agents. When real TH cells become activated, they lose this chemokine
receptor and so in the model activated TH cell agents move to random Moore
neighbours. TH cell agents have associated with them an affinity measure type
and activation threshold that is used when they interact with APC agents. Only
naive TH cell agents interact with APC agents, and these APC agents must be
in the activated state, and thus, presenting a peptide bit string. When such an
APC agent is in the Moore neighbourhood of a naive TH cell agent, the avidity
between the two is calculated. The affinity between the peptide being presented
by the APC and the receptor of the TH cell is calculated. As the antigen and TH
cell receptor are implemented as bit strings, two affinity measures are defined
in the model which are the Hamming distance and R-contiguous bits measure.
The Hamming distance returns as the affinity the result of applying the XOR
operator to the strings, while the R-contiguous bits measure returns the size of
the longest run of complementary bits between the strings. This affinity measure
is then multiplied by the antigen concentration level of the APC to provide the
avidity. This avidity is then compared to the user-defined activation threshold
to determine whether the TH cell becomes activated or not.

4.4 The Simulator

To run useful experiments, a simulator written in the Java programming lan-
guage is used to execute the model just described. This can be run either in-
teractively via a graphical user interface (see Fig. 4) or on the command line
allowing for batch simulation runs. The results of a simulation run, such as the
TT cells that have become activated, can be saved to a log file for future analy-
sis. The simulator has the following user defined parameters which are set via a
configuration file:

– Width, w: The width of the cellular space in number of cells. Typically in
the range 50 to 200.

– Height, h: The height of the cellular space in number of cells. Typically the
same as the width.

– Number of Pre-Iterations, pre itns: The number of simulation iterations be-
fore the agents are inserted. During this time only the chemical space settings
up date thus allowing it time to settle down from a random initialisation.
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– Number of Iterations, itns: The number of simulation iterations once the
agents have been inserted.

– Chemokine Producer Percentage, chem prod: The percentage of the total
chemical space set to be the chemokine producing area.

– Maximum Chemokine Level, chem max: The maximum allowed chemokine
value of a chemical space cell upon initialisation of the simulator.

– Maximum Antigen Ingestion, ag max: The maximum number of antigen
agents a single APC is allowed to ingest.

– Number of APCs, apc num: The number of APC agents.
– Number of Antigens, ag num: The number of antigen agents.
– Number of TH Cells, th num: The number of TH cell agents.
– Recognition Threshold, recog: A user defined avidity threshold to determine

whether a TH cell becomes activated upon interaction with an APC.
– Affinity Measure, aff: The type of metric used to calculate the affinity be-

tween an APC peptipe string and a TH cell receptor.
– Antigen String, ag: The bit string that represents the antigen shape. This is

the same for all antigen agents in the simulation.
– TH Cell Receptors, ths: The list of bit strings that represent the unique

receptors for each TH cell in the simulation. The size of the list equals the
number of TH cells parameter.

5 Initial Results and Observations

In this section we first describe the behaviour of the simulator, and then show
the type of results it generates. During a typical run of the simulator, a number
of emergent behaviours can be seen that result from the rules of the model
described above. Firstly, during the pre-iterations stage when only the chemical
space updates, a visually stable chemokine gradient emerges that flows from a
high concentration in the central paracortex region to a low concentration at the
top and bottom of the chemical space. After the pre-iterations have finished, all
the agents are inserted into the agent space at random positions and start to
move and update as the iterations proceed. As the antigen agents cannot move
upwards in the agent space, they cycle as a population from the top to the bottom
of the agent space, being ingested as they encounter APC agents. As a results,
the number of free antigen agents decreases during a run of the simulator. All
the TH cell agents are inserted in the naive state, so they immediately start to
follow the chemokine gradient in the chemical space and soon settle in the centre
of the paracortex area where the chemokine gradient is at its greatest. Once in
the centre, the naive TH cell agents continue to move due to the stochasticity
in chemokine values at the local level of the chemical space. Like the TH cell
agents, all the APC agents are naive when inserted and thus move randomly
until the ingest antigen and become activated. Once activated, they follow the
same movement behaviour of the naive TH cell agents, gravitating to the centre
of the paracortex region. Once in the centre, the activated APC agents are close
enough to the naive TH cell agents for them to interact, which results in some
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of the TH cell agents becoming activated depending on whether the avidity with
the APC agents is above the recognition threshold. Once activated, the TH cell
agents lose their chemokine receptor and start move randomly resulting in them
drifting away from the paracortex region. At the end of the simulation iterations,
the activated TH cell agents are noted. Even though the overall behaviour of the
agents in the model may be what is expected, it goes some way to justify the
model as the individual pieces of biology detail that has been used to build
it, combines to produce behaviour (i.e. movement and interactions of immune
agents) similar to that seen in real lymph nodes.

Due to the number of parameters that can be changed in the simulator, many
different experiments can be run to investigate different issues and effects relating
to the behaviour of the model. It is noted that a large numbers of parameters
can often hinder the experimentation and results gained from simulations such as
ours. However, some initial parameter investigations suggest that the behaviour
of the simulator is insensitive to appropriate changes in many of the parameters
such as the cellular space sizes and chemical space parameters. These parameters
can therefore be kept constant for experimentation into the degenerate receptors.
This leaves the simulator with only a small manageable subset of the parameters
described above (such as the recognition threshold, antigen receptor and TH cell
receptors) that have a real effect on degenerate recognition in the model. By
investigating the effects of these parameters, useful design principles for an AIS
algorithm employing similar parameters should become apparent.

As an example, we present the results from an experiment investigating the
patterns of 10 unique TH cell agents with 8-bit receptors that become activated
when the simulator is run separately with 20 different 16-bit antigens. For each
antigen, the simulator is run 50 times and the percentage of simulations in which
each TH cell agent becomes activated is calculated. The results are shown in
Table 1, where a blank entry means that the TH cell agent did not become
activated. The parameters used for this experiment were: w = 50, h = 50, pre itns
= 100, itns = 500, chem prod = 25%, chem max = 500, ag max = 1, apc num
= 10, ag num 20, th num = 10, recog = 4 and aff = R-contiguous bits.

The degeneracy of the TH cells can clearly be seen in the results as each
TH cell is reacting to different antigen ligands (see definition in section 2). We
can also see that each of the 20 antigens invokes a unique set (pattern) of TH
cells to become activated. These sets are of different sizes for different antigens,
ranging from 2 to 6 TH cells being activated. It is interesting to note that the
2 TH cells that become activated by Antigen 9 are also activated by Antigen 8,
but the sets differ as Antigen 8 also activated 2 more TH cells. The percentage
values for the TH cell activations can be seen as a sensitivity that the TH cell
has for the antigen. In general, the results highlight the ability of 10 randomly
generated degenerate detectors to collectively distinguish between at least 20
different patterns based on the pattern of response of the detectors. This shows
that our model contains degerate detectors capable of reacting in different ways
to different patterns, and is therefore a tool we can use for further investigations
into the properties degeneracy.
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Table 1. Results of a sample experiment showing the percentage of 50 simulations in
which the 10 unique TH cell agents become activated for 20 different 16-bit antigens

TH 1 TH 2 TH 3 TH 4 TH 5 TH 6 TH 7 TH 8 TH 9 TH 10

Antigen 1 62 86 64
Antigen 2 64 62 66 70 56 70
Antigen 3 58 96
Antigen 4 60 66 62 58 68
Antigen 5 68 62
Antigen 6 84 52 82 60 84
Antigen 7 56 82
Antigen 8 66 48 64 58
Antigen 9 96 80
Antigen 10 62 62 50
Antigen 11 60 94 58
Antigen 12 58 68 60 68 68
Antigen 13 66 70 60
Antigen 14 60 90 62 72
Antigen 15 50 52 74
Antigen 16 62 84 64 90 56 88
Antigen 17 56 62 74 58
Antigen 18 54 60 58 88 60
Antigen 19 58 56 64 58 66 66
Antigen 20 82 60 88 90 52

6 Conclusions and Future Work

In this paper we began with a desire to investigate alternative immune ideas
for AIS inspiration and identified degeneracy as a possible candidate. By fol-
lowing the suggestions of the conceptual framework approach to bio-inspired
algorithm design [7], an abstract computational modelling exercise was chosen
to investigate degeneracy as the first step towards AIS design. Lymph nodes
were identified as being possible places where degenerate recognition would take
place by lymphocytes (in particular TH cells) as they are the places where the
adaptive immune response to foreign antigen in the lymph are initiated. By con-
sidering TH cells to be degenerate, and investigating the biological details of the
lymph node and TH cell activation, an abstract two-layer cellular space model
of degeneracy in the lymph node was designed and built, with sample results
highlighting the ability of randomly generated detectors to distinguish between
patterns based on their collective response. The purpose of the model we have
designed is not to explain how the collective TH response leads to the different
ways the immune system responds pathogens. It is, rather, an investigation into
the computational recognition capabilities of detectors based on the assumption
that these detectors are inherently degenerate.

Further work will concentrate on continuing the conceptual framework [7]
path to design and build an AIS that utilises degenerate detectors. Firstly,



A Computational Model of Degeneracy in a Lymph Node 177

comprehensive experimentation with the model described in this paper will be
used to understand better the recognition abilities of degenerate detectors. This
insight will then lead to the identification of design principles for using degen-
erate detectors. Based on these an AIS with degenerate detectors for the task
of pattern classification will be designed and built, that may provide greater
scalability and generalisation performance over existing classification AIS.

References

1. Andrews, P.S., Timmis, J.: Inspiration for the next generation of artificial immune
systems. In: Proceedings of the 4th International Conference on Artificial Immune
Systems (ICARIS 2005), LNCS 3627, Springer (2005) 126–138

2. Hart, E., Timmis, J.: Application areas of AIS: The past, the present and the
future. In: Proceedings of the 4th International Conference on Artificial Immune
Systems (ICARIS 2005), LNCS 3627, Springer (2005)

3. Cohen, I.R.: Discrimination and dialogue in the immune system. Seminars in
Immunology 12 (2000) 215–219

4. Cohen, I.R.: Tending Adam’s Garden: Evolving the Cognitive Immune Self. Else-
vier Academic Press (2000)

5. Cohen, I.R.: The creation of immune specificity. In Segal, L.A., Cohen, I.R.,
eds.: Design Principles for Immune Systems and Other Distributed Autonomous
Systems. Oxford University Press (2001) 151–159

6. Cohen, I.R., Hershberg, U., Solomon, S.: Antigen-receptor degeneracy and im-
munological paradigms. Molecular Immunology 40 (2004) 993–996

7. Stepney, S., Smith, R., Timmis, J., Tyrrell, A., Neal, M., Hone, A.: Conceptual
frameworks for artificial immune systems. International Journal of Unconventional
Computing 1 (2005)

8. Edelman, G.M., Gally, J.A.: Degeneracy and complexity in biological systems.
Proceedings of the National Academy of Science (PNAS) 98 (2001) 13763–13768

9. Parnes, O.: From interception to incorporation: Degeneracy and promiscuous
recognition as precursors of a paradigm shift in immunology. Molecular Immunol-
ogy 40 (2004) 985–991

10. Burnet, F.M.: The Clonal Selection Theory of Acquired Immunity. Cambridge
University Press (1959)

11. Sercarz, E.E., Maverakis, E.: Recognition and function in a degenerate immune
system. Molecular Immunology 40 (2004) 1003–1008

12. Tieri, P., Castellani, G.C., Remondini, D., Valensin, S., Loroni, J., Salvioli, S.,
Franceschi, C.: Capturing degeneracy of the immune system. In Flower, D., Tim-
mis, J., eds.: To appear: In Silico Immunology. Springer (2007)

13. Abbas, A.K., Lichtman, A.H.: Cellular and Molecular Immunology, 5th edition.
Saunders (2003)

14. Goldsby, R.A., Kindt, T.J., Osborne, B.A., Kuby, J.: Immunology 5th edition. W.
H. Freeman and Company (2003)

15. Janeway, C.A., Travers, P., Walport, M., Shlomchik, M.: Immunobiology 5th edi-
tion. Garland Publishing (2001)

16. Anderton, S.M., Wraith, D.C.: Selection and fine-tuning of the autoimmune t-cell
repertoire. Nature Reviews Immunology 2 (2002) 487–498

17. Maree, A.F.M., Panfilov, A.V., Hogeweg, P.: Migration and thermotaxis of Dic-
tyostelium discoideum slugs, a model study. Journal of Theoretical Biology 199
(1999) 297–309



H. Bersini and J. Carneiro (Eds.): ICARIS 2006, LNCS 4163, pp. 178 – 192, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Structural Properties of Shape-Spaces 

Werner Dilger 

Chemnitz University of Technology 
09107 Chemnitz, Germany 

dilger@informatik.tu-chemnitz.de 

Abstract. General properties of distance functions and of affinity functions are 
discussed in this paper. Reasons are given why a distance function for ℜn based 
shape-spaces should be a metric. Several distance functions that are used in 
shape-spaces are examined and it is shown that not all of them are metrics. It is 
shown which impact the type of the distance function has on the shape-space, in 
particular on the form of recognition or affinity regions in the shape-space. 
Affinity functions should be defined in such a way that they determine an 
affinity region with positive values inside that region and zero or negative 
values outside. The form of an affinity function depends on the type of the 
underlying distance function. This is demonstrated with several examples. 

Keywords: Shape-space, distance function, metric, affinity function, affinity 
region. 

1   Introduction 

The mostly used definition of shape-spaces is the one introduced by Perelson and 
Oster in [12]. According to this definition, the interaction between elements of the 
immune system (cells, antibodies, or molecules) and antigens is determined by 
properties of shape. Actually, this approach is an abstraction from the real immune 
system, where the interaction is essentially based on electrical forces due to the 
charge distribution on the surface of the molecules. The next step of abstraction, then, 
is the representation of the shape properties by a string of parameters of certain types 
of values like binary, integer, real, or symbolic. 

A basic notion in the Perelson/Oster shape-space is that of complementarity, which 
means that an immune element and an antigen must have complementary shapes in 
order to exert affinity on each other. On the basis of the vector representation, in 
many AIS realizations complementarity has been replaced with similarity (cf. [4]), 
just by “changing the sign”. Different types of affinity have been defined, depending 
on the type of the shape-space as a vector space, but all of them are based on some 
distance measure like Euclidean distance or Hamming distance. 

In [1], Bersini introduced an alternative definition of a shape-space which on first 
glance departs considerably from the Perelson/Oster definition. The shape-space is 
based on ℜn, more precisely on ℜ2. However, Bersini uses a special definition of 
affinity which makes his shape-space particularly interesting. This definition 
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incorporates complementarity as mirror image (or complementary) positions in ℜ2 
together with a fixed affinity region where the immune elements (antibodies) are 
attracted with graded force. Bersini’s approach has been adopted and modified in 
several ways by Hart and Ross [7] who demonstrate the properties of this kind of 
shape-space by a number of simulation experiments. 

The properties of Bersini’s shape-space and some extensions of it were discussed 
in detail in [6]. The aim of this paper is to give a general framework for the definition 
of shape-spaces that reveals the similarities and differences between various 
approaches. Also, I argue that a shape-space defined over ℜn should be a metric 
space. This is mainly done in section 2. In section 3, the principles described in 
section 2 are adopted for finite shape-spaces. Various approaches for defining 
distance functions on Hamming spaces are examined and it is shown that not all of 
them are metrics. Based on distance functions, affinity functions can be defined in 
different ways which are presented in section 4. 

2   Structural Aspects of Shape-Spaces 

I will make two general presuppositions about shape-spaces. First, a shape-space is a 
set S of attribute strings of finite length. The values of the attributes can be taken from 
arbitrary domains. Second, on S a function d: S × S → ℜ is defined, called “distance 
function”, which satisfies the following conditions: If x, y ∈ S then 

(i) d(x, y) ≥ 0 
(ii) d(x, y) = 0 ⇔ x = y 
(iii) d(x, y) = d(y, x) 

There are no additional requirements on d, i.e. one is free to choose an arbitrary 
two-dimensional function as long as it satisfies the three conditions. Therefore, even 
such a strange function as the following one can serve as a distance function: 

 ( ) =
=

otherwise1

if0 yx
yxd  (1) 

Commonly used distance functions on ℜn are Euclidean and Manhattan distance: 

 Euclidean ( ) ( )
=

−= n

i iiE yxd
1

2yx  (2) 

 Manhattan ( )
=

−=
n

i
iiM yxd

1

yx  (3) 

Since the distance function d is a constituent part of a shape-space, I will denote a 
shape-space in the following as a pair (S, d). Clearly, the function d induces a 
structure on a shape-space depending on the form of the function, such that two 
shape-spaces (S, d1) and (S, d2) with different distance functions are different even if 
the underlying set is the same. 
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An important concept in shape-spaces that is used for the definition of affinity (cf. 
section 4) is that of complementarity. It can be defined for binary strings in a natural 
way but can be adopted for arbitrary shape-spaces. The complement of an element i is 
denoted as compl(i). Often the complement is defined with respect to a third element c 
and will be denoted by complc(i, c) or ic for short. If we assume that the distance 
function is the only structure that is defined on the carrier set of the shape-space 
(nothing has been said about any other structure) then the complement must be 
defined by means of the distance function alone. All elements of the space that have 
the distance d(i, c) from c lie on the surface of an n-dimensional ball with center c and 
radius d(i, c). There is a point on this surface that has the distance 2d(i, c) (the 
diameter of the ball) from i. This point will be taken as the desired element ic. But is 
this point uniquely determined? It depends on the distance function d. 

For instance for the function we get d(i, c) = d(ic, c) = d(i, ic) = 1, thus a 
complementary element cannot be uniquely determined. We want to exclude distance 
functions of this type and this can be done by an additional condition on distance 
functions, the so called triangle inequation (cf. [10]): For an arbitrary element z 

(iv) d(x, y) ≤ d(x, z) + d(z, y) 

Notice that with this additional condition the distance function becomes a metric and 
the shape-space a metric space. Now for the complement ic according to the definition 
above it must hold d(i, c) = d(c, ic). Together with the triangle inequation we get d(i, 
ic) ≤ d(i, c) + d(c, ic) = 2d(i, c). On the other hand, ic shall be the point farthest away 
from i but still on the ball, i.e. its distance from i should be at least the diameter of the 
ball, in other words, d(i, ic) ≥ 2d(i, c), so altogether d(i, ic) = 2d(i, c). However, the 
triangle inequation is only a necessary condition for the existence of such a point, not 
a sufficient one. 

An important concept in metric spaces is the ε-ball (cf. [10]). An ε-ball centered at 
some point i is the set b(ε, i) = {x ∈ S: d(i, x) < ε}. Obviously, the form of the ε-ball 
depends on the distance function. For the Euclidean distance the ball is defined by 

( ) ε<−
=

n

i ii yx
1

2  or ( ) 2

1

2 ε<−
=

n

i ii yx  which is a hyperball in ℜn, a ball in ℜ3, 

and a circle in ℜ2. For the Manhattan distance, the ε-ball is a hyperrhombus of 
dimension n with 2n planes, i.e. in the three-dimensional case it is a regular diamond 
with eight planes and in the two-dimensional case it is a rhombus, as is shown in [6]. 

Let us examine these two metrics with respect to complementary elements. 
Clearly, in the Euclidean metric the complement ic of i is a unique point. All other 
points on the surface of the ball around c have a shorter distance from i than ic. In the 
Manhattan metric, things are different. Consider the case illustrated in figure 1 for two 
dimensions. All points on the thick side of the rhombus have the same distance from c 
and therefore also from i, thus there is no unique complementary point ic. This follows 
from the Manhattan metric as can be easily proved. Consider the two points p and q 
with the coordinates (c1, c2 – L) and (c1 + L, c2) for some L > 0, L is half the length of 
the diagonal. An arbitrary point y on the line between p and q has the coordinates (λc1 
+ (1 − λ)(c1 + L), λ( c2 – L) + (1 − λ)c2) = (c1 + (1 − λ)L, c2 – λL) with 0 ≤ λ ≤ 1. The 
distance of this point from c according to Manhattan distance is computed by 
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Thus every point on the side has the same distance to the center and this holds for 
all sides. As a consequence, the length of the side and the length of the diagonal are 
equal. 

 

p

i 

c

ic

q

 

Fig. 1.  Complementary element in a Manhattan shape-space 

One way to achieve a unique complement is to require that the three points i, c and 
ic lie on a straight line. This results in an additional condition: 

(v)  ( ) 2jjj iic c+=   for all j = 1, …, n 

Notice that this holds only for shape-spaces based on infinite sets, in particular ℜn. 
Things are different and simpler for finite shape-spaces, in particular Hamming 
spaces, because here the complement is determined uniquely in a natural way as will 
be shown in the next section. 

3   Finite Shape-Spaces 

If V is a finite set of n elements, the power set of V, 2V, forms a complete lattice with 
respect to set inclusion. This lattice is isomorphic to the lattice formed by the set H of 
binary strings of length n with 1 as top and 0 as bottom element and an appropriate 
partial order on the set. To define such an order we need a function that counts the 
number of 1’s in a string. This is equivalent to computing the sum of the digits of the 
number; the desired function will be called ones, i.e. 

 ( )
=

=
n

i
ixones

1

x  (5) 

By means of ones the partial order  on H is defined as follows: 
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 ( ) ( ) ( )( ) 11 =∧+=⇔ yxxyyx XORonesonesones  (6) 

Figure 2 shows this lattice for n = 4. The set H provided with a distance function is 
called a (binary) Hamming shape-space. A usual definition of a distance function on 
H (cf. e.g. [4]) is the following one: 

 ( ) ( )( )yxyx XORonesd XOR =  (7) 

thus (H, dXOR) is a shape-space. Because of the isomorphism between (2V, ⊆) (V a 
finite set) and (H, ) we can restrict the investigation of finite shape-spaces to that of 
binary Hamming spaces. 

 1 1 1 1 

0 0 0 0 

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 

1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 

1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 

 

Fig. 2.  The lattice of a binary Hamming space with strings of length 4 

In section 2 I argued that in ℜn based shape-spaces distance functions should be 
metrics in order to define complementary elements. This does not hold for Hamming 
shape-spaces because here the complement of an element can be defined independ-
ently from the chosen distance function. However, one may ask if all distance 
functions are metrics as some authors believe (e.g. [8]). Therefore some distance 
functions that are in use for Hamming spaces will be examined in the following. 

First, I will show that dXOR is a metric. For this purpose the conditions (i) – (iv) of 
the definition must be checked. The first three are trivial. The triangle inequation can 
be proven as follows: Assume ones(XOR(x, y)) = k. Then x and y differ in k positions. 
If z = x or z = y the triangle inequation is trivially satisfied. If z ≠ x and z ≠ y let 
ones(XOR(x, z)) = l and ones(XOR(y, z)) = m. This means, z is identical with x except 
in l positions. But then z must be different from y in at least k – l positions, otherwise 
ones(XOR(x, y)) < k, therefore l + m ≥ k. 

Since dXOR is a metric, we can also describe what an ε-ball centered around an 
element i would be. It is defined by b(ε, i) = {x ∈ S: ones(XOR(i, x)) < ε}. The points 
x in the ε-ball have the property that they differ from i in at most ε  positions, where 
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ε  is the greatest integer less than ε. Let ε  = k. Then the surface of the ε-ball is the 
set of points x with ones(XOR(i, x)) = k. These points can be reached from i traversing 
through the lattice on paths of length k. Take as an example the point 1101 in figure 2. 
In order to determine the points that can be reached on paths of length 2 from 1101 it 
is easier to change the lattice of figure 2 such that 1101 becomes the top element, cf. 
figure 3.  

In this lattice we have to go down two steps from the top element and find the 
elements that are different from i in exactly two positions. These points form the 
surface of an ε-ball with 2 ≤ ε < 3. Notice that for this lattice a variant of the partial 
order is required. It is defined by 

 ( )( ) ( )( ) ( )( )topxtopyyxyx XORonesXORonesXORones <∧=⇔ 1  (8) 

where top is the chosen top element, i.e. i. Actually, the lattice of an n-dimensional 
Hamming space is an n-dimensional diamond that can be turned in arbitrary direction 
such that every element can become the top element. 

 

compl(i)

i 1 1 0 1 

0 0 1 0 

0 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 

0 0 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0 

0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 

 

Fig. 3.  A lattice for binary strings of length 4 with top element 1101 

Usually, the complement of an element x ∈ H is defined as the element y for 
which XOR(x, y) = 1 holds, i.e. compl(x) = y ⇔ XOR(x, y) = 1. Figure 4 illustrates 
this operation. 

 1 0 1 1 1 0 1 0 1 0 

0 1 0 0 0 1 0 1 0 1 

1 1 1 1 1 1 1 1 1 1 = 

XOR 

 

Fig. 4.  The operation compl in a Hamming space 
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There are also other distance functions in use for Hamming spaces. One is the  
r-contiguous bit rule [11]. Its definition is based on the XOR-function like the distance 
function above. The rule adopts the maximum of a certain set of values that is defined 
by 

 ( ) ( ) ( ) ( ){ }ssussu lengthonesonesU == withofsubstringais  (9) 

The condition in U guarantees that the selected substrings only contain 1’s. By means 
of the set U the r-contiguous bit rule can be formulated as 

 ( ) ( )( )yxyx XORUcontr =−  (10) 

It is easy to see that this definition of the r-contiguous-rule satisfies the first three 
conditions of a metric. But it does not satisfy the triangle inequation. Figure 5 gives a 
counterexample. Thus, for any set of binary strings H, (H, r-cont) is not a metric 
space. 

1 0 1 0 1 1 1 0 0 1 

y 

r-cont(x, y) = 3 1 0 1 1 1 0 1 0 1 1 

1 1 1 0 0 1 1 0 0 1 

x 

z 

r-cont(x, z) = 1 

r-cont(y, z) = 1  

Fig. 5.  An example showing that the r-contiguous-rule does not satisfy the triangle inequation 

A variant of the r-contiguous rule is the multiple contiguous bit rule [9]. For its 
definition the following set V is required: 

 ( ) ( ) ( ) ( ) ( )=≥=
=

yxuss

us
syx

XORlengthones

i
onesV i

i
and2

withofsubstringtheis th

 (11) 

By means of the set V the multiple contiguous bit rule can be defined as follows: 

 ( ) ( )( ) ( )+=−
i

weight iXORonescontmult syxyx 2  (12) 

Like the r-contiguous bit rule, the multiple contiguous bit rule trivially satisfies the 
conditions of a distance function. However, it does not satisfy the triangle inequation. 
This can be shown with the example of figure 5. Figure 6 shows the strings XOR(x, 
y), XOR(x, z), and XOR(y, z) and the value of mult-cont for these strings. So again, 
(H, mult-cont) is not a metric space. 

 

0 1 0 0 1 0 0 0 0 0 

XOR(x, y)

XOR(x, z)

XOR(y, z)

0 1 0 1 1 1 0 0 1 0 

0 0 0 1 0 1 0 0 1 0 

mult-cont(x, y) = 13 

mult-cont(x, z) = 3 

mult-cont(y, z) = 2  

Fig. 6.  The strings XOR(x, y), XOR(x, z), and XOR(y, z) with x, y, and z as in figure 6 
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The similarity measure of Rogers and Tanimoto (abbreviated R/T) has been used as 
an affinity measure [13]. We will examine the underlying distance function to see if it 
is a metric. R/T uses the following four auxiliary functions: 

 

( ) ( )( )
( ) ( )( )( )
( ) ( )( )( )
( ) ( ) ( )( )( )yxyx

yxyx

yxyx

yxyx

NOTNOTANDonesd

NOTANDonesc

NOTANDonesb

ANDonesa

=
=
=
=

 (13) 

With these functions the measure is defined as 

 ( ) ( ) ( )
( ) ( ) ( ) ( )( )yxyxyxyx

yxyx
yx

cbda

da
TR

+++
+=
2

 (14) 

This function has some properties which show that it cannot be interpreted as a 
distance function.1 First, since for all ϕ ∈ {a, b, c, d} it holds ϕ(x, y) ≥ 0, it follows 
that 0 ≤ R/T(x, y) ≤ 1, i.e. the value domain is normalized, which seems unnatural for 
a distance function. Second, R/T(x, x) = 1 because a(x, x) + d(x, x) = n and b(x, x) = 
c(x, x) = 0. Thus, R/T does not even satisfy condition (ii) of a distance function. Third, 
R/T(x, y) = 0 if and only if a(x, y) = d(x, y) = 0, again because ϕ(x, y) ≥ 0 for all ϕ ∈ 
{a, b, c, d}. (Notice that in this case b(x, y) + c(x, y) > 0.) But a(x, y) = 0 requires that 
there is no position where both, x and y, have a 1, correspondingly for d(x, y) = 0, i.e. 
x and y are complementary. 

These observations lead to the following definition of R/T: In the numerator of the 
function all positions are counted where x and y are equal (either 0 or 1). The same 
value can be achieved if first XOR is applied, then NOT, and then the number of 1’s in 
the result is counted. In the denominator the same value occurs augmented by the 
number of positions where x and y are different. This gives 
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 (15) 

where n is the length of the binary strings. In order to prove the equivalence of the 
two definitions (14) and (15) we have to show that a(x, y) + d(x, y) = n − 
ones(XOR(x, y)) and b(x, y) + c(x, y) = ones(XOR(x, y)). a(x, y) + d(x, y) is the 

                                                           
1 Actually, Rogers and Tanimoto intended to define a similarity measure [15] which is more or 

less the opposite of a distance function. 
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number of all positions j where xj = yj. XOR(x, y) is the vector with 1’s in all positions 
j where xj ≠ yj and ones(XOR(x, y)) is the number of those 1’s, thus n − ones(XOR(x, 
y)) is the number of those positions where xj = yj and therefore both terms have the 
same value. A similar argument can be given for the second case. 

Given some i ∈ H, the R/T-function has a maximum exactly for the point y with i 
= y, and for all other binary vectors it has some value between 0 and 1. It has a 
minimum for the point y which is the complement of i. Thus R/T changes the form of 
the lattice of figure 2 in such a way that for a special element i this element becomes 
the top element and compl(i) the bottom element, cf. figure 3. The function decreases 
with growing values of dXOR(x, y) from 1 to 0 in an exponential form. This is shown in 
figure 7 for n = 10. 
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Fig. 7.  The form of the Rogers/Tanimoto function for n = 10 

4   Affinity Functions 

Shape-spaces are not defined as abstract structures; rather their main purpose is to 
describe a special relationship between their elements called affinity. The affinity 
between two immune elements certainly depends on their distance in the shape-space. 
Several authors, e.g. [2], [3], consider affinity as a constant quantity and are interested 
in the total amount of influence of other elements on some immune element x. In [1], 
a more detailed concept of affinity is given. According to it, affinity is a time 
dependent quantity and in addition depends on the concentration of an element i that 
exerts affinity on other elements. I will adopt this approach in the following. 

The question is, whether shape is a constant property of immune elements and 
therefore also the distances between them, in particular antibodies, or not. The shape 
of an antibody can be modified by mutation. However, according to the usual 
definitions of mutation, the distances between an element and its mutants are small, so 
that the mutants of an element x lie in an ε-ball around x with small ε. Therefore 
distance will be considered as a constant quantity in the following, i.e. the distance 
between y and x and that between y and a mutant of x are taken as equal. 



 Structural Properties of Shape-Spaces 187 

Affinity, however, will be considered as time dependent. Like in [1], it will be 
defined as a function that determines the amount of affinity between two elements and 
at the same time a limited region in the shape-space, the affinity region, which has the 
form of an ε-ball. The affinity function shall have positive but restricted values inside 
the affinity region and be zero or negative outside. 

Let T be the infinite set of time points. The affinity that an element i exerts on an 
element x at time t is defined as a function aff: S × S × T → ℜ and is denoted by aff(i, 
x, t). There are two main types of affinity presented in the literature [cf. 5], one called 
similarity based and another called complementarity based. In both types, affinity is 
defined as inversely proportional to distance, i.e. the smaller the distance between i 
and x the higher the affinity. The two elements are understood as similar if their 
distance is small. For the second type of affinity we need the concept of 
complementarity as defined in section 2. In order to distinguish between the two 
forms of affinity I will use the notation affs(i, x, t) for the similarity based affinity and 
affc(i, x, t) for the complementarity based affinity. In the second version affinity is 
defined as inversely proportional to the distance between x and ic. The points around i 
or ic respectively form an ε-ball, which is known as the recognition region [5, 14] or 
the affinity region [1]. 

In the following I will first present a formal treatment of affinity functions and then 
show, that this is just a generalization of other approaches that explicitly consider 
concentration of elements in the definition. There are different ways to define the 
function aff such that it has the desired property. The simplest form of aff would be a 
function with a constant (but time dependent) positive value inside the affinity region 
and zero outside. The affinity region is simply determined by an upper bound to the 
distance: 

 ( ) ( ) ( ) ( )≤
=

otherwise0

if tbdta
taff

xi
xi  (16) 

a and b are functions of time, b is used as an upper bound to the distance. The affinity 
region is an ε-ball around i restricted by b(t). The form of the ε-ball depends on the 
definition of d. However, such a definition seems not adequate because all elements in 
the affinity region have the same affinity a(t) and there is no difference of affinity 
between elements close to i and those more remote. A more adequate form seems to 
be a linear function. It has the general form 

 ( ) ( ) ( ) ( )tbdtataff +⋅= xixi  (17) 

Again, a and b are functions of time. Let us consider some properties of this function, 
more precisely of affs. affs(i, x, t) = 0 iff a(t)⋅d(i, x) + b(t) = 0 or 

 ( ) ( )
( )ta

tb
d −=xi  (18) 
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We assume that a(t) ≠ 0. If a(t) = 0 then b(t) must also be zero which denotes the 
extreme case of an affinity region shrunk to a point. The distance between two 
elements must be a positive value, therefore b(t) and a(t) must have opposite signs. 
Thus from (18) we get the equation a(t)⋅d(i, x) − b(t) = 0 or −a(t)⋅d(i, x) + b(t) = 0, 
assuming both, a(t) and b(t), are positive. These equations describe the rim of the 
affinity region (the surface of an ε-ball). Its form is determined by the distance 
function d and its size by the functions a and b. The points on the rim are exactly 
those x for which d(i, x) = b(t)/a(t). 

For the points inside or outside the region the inequations that can be derived from 
the two equations must be treated separately. In the second form of the inequation, 
−a(t)⋅d(i, x) + b(t) < 0 (i.e. aff is negative) is equivalent to a(t)⋅d(i, x) > b(t), i.e. for 
the points outside the affinity region, and −a(t)⋅d(i, x) + b(t) > 0 (aff is positive) is 
equivalent to a(t)⋅d(i, x) < b(t), i.e. for the points inside the affinity region. The first 
form of the inequation would have the (undesired) opposite result. The two cases are 
illustrated by figure 8. Therefore the only linear version of aff that yields an affinity 
region with positive values of the affinity function is that of equation (19): 

 ( ) ( ) ( ) ( )tbdtataff +⋅−= xixi  (19) 
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Affinity 
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x1

x2 

ic positive 
values 
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Affinity 
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x1 

x2

ic negative 
values 

positive 
values 

Case 1: a(t)⋅d(i, x) – b(t) < 0 Case 2: –a(t)⋅d(i, x) + b(t) < 0 
 

Fig. 8.  Regions with positive or negative affinity values depending on the form of the function 

Since aff is restricted inside the affinity region by b(t), it adopts a maximum at the 
point x = i, its value is clearly b(t). aff can also be defined as a quadratic function: 

 ( ) ( ) ( ) ( )tbdtataff +⋅−= 2xixi  (20) 

(For simplicity, the linear component of the equation is omitted.) This function is zero 
if ( ) ( ) ( )tatbd =xi  (the rim of the affinity region), positive if ( ) ( ) ( )tatbd <xi , 

i.e. inside the region, and negative outside. However, higher order functions would 
have the unpleasant result that the region of positive values is not coherent, for 
instance it could look like the shadowed regions in figure 8 for the complementarity 
based affinity. Therefore such functions will not be considered as adequate 
representations of affinity. 
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Fig. 9.  A non-coherent affinity region 

aff can also be defined by a bell-shaped function like the following: 
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This function never adopts the value 0 but its value is very low outside some limited 
circular region. Thus, by diminishing the function by some small constant we can get 
the desired version. 

To illustrate the definitions in this section, let us consider the complementarity 
based version of affinity for the two-dimensional shape-space and with linear affinity 
function. If d is the Euclidean metric, the affinity function is 

 ( ) ( ) ( ) ( ) ( )tbxicxictatxxiiaff c +−−+−−⋅−= 2
222

2
1112121 22  (22) 

The affinity region is defined by the condition affc(i1, i2, x1, x2, t) = 0 or 

( ) ( ) ( ) ( )2
222

2
111 22 xicxictatb −−+−−=  which means that it is a circle with 

radius b(t)/a(t). The points inside the circle have positive values and the maximum 
value is at the point (2c1 – i1, 2c2 – i2), i.e. at the center of the circle. The affinity 
function has the form of a cone. If d is the Manhattan metric, the affinity function is 

 ( ) ( ) ( ) ( )tbxicxictatxxiiaff c +−−+−−⋅−= 2221112121 22  (23) 

The rim of the affinity region is given by b(t)/a(t) = (|2c1 – i1 – x1| + |2c2 – i2 – x2|). 
Thus it is a rhombus with center (2c1 – i1, 2c2 – i2) and a pyramid as the form of the 
affinity function, as was shown in [6]. Let us consider Bersini’s version of the 
function in [1] written in the notation used throughout this paper: 

 ( ) ( ) ( )( )222111212121 22 xicxicLtiiCtxxiiaff c −−+−−−⋅=  (24) 

This equation can be slightly transformed such that it is more similar to (23): 

 ( ) ( ) ( ) ( )tiiCLxicxictiiCtxxiiaff c 21222111212121 22 ⋅+−−+−−⋅−=  (25) 

With a(t) = C(i1, i2, t) and b(t) = L⋅C(i1, i2, t) the two equations become identical. 
The difference between them is that in Bersini’s version b is just the L-fold of a for 
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some constant L. In this respect (23) is more general than (24) although the functions 
a(t) and b(t) cannot be considered as completely independent from each other. This 
illustrates that an appropriate interpretation of the function a(t) is as the concentration 
of i. 

For the affinity in Hamming shape-spaces the distance function dXOR is used. With 
the linear version of the affinity function the two types of affinities have the form 

 ( ) ( ) ( )( ) ( )tbXORonestataff s +⋅−= xixi  (26) 

 ( ) ( ) ( )( )( ) ( )tbcomplXORonestataff c +⋅−= xixi  (27) 

Consider the complementarity based affinity. The affinity function adopts its 
maximum value if ones(XOR(compl(i), x)) = 0 which is equivalent to XOR(compl(i), 
x) = 0, and this means compl(i) = x. Thus, the point of maximum value is just the 
vector compl(i), and this corresponds to the result in Euclidean and Manhattan shape-
spaces where it is the center of the affinity region. The affinity function is zero if 
b(t)/a(t) = ones(XOR(compl(i), x)). This holds for all vectors x that are different from 
compl(i) in exactly b(t)/a(t) components. For vectors that differ in less than b(t)/a(t) 
components from compl(i) we have ones(XOR(compl(i), x)) < b(t)/a(t) and so affc(i, x, 
t) > 0, and for vectors with more than b(t)/a(t) different components affc(i, x, t) < 0. 
Thus the vectors with exactly b(t)/a(t) different components form the rim of a region 
in the Hamming space that can be taken as the affinity region. affc(i, x, t) has a linear 
gradient from compl(i) to the rim of the region with respect to the sum of the digits of 
the vectors. Thus, with respect to the affinity function, the Hamming shape-space can 
be compared with an iceberg whose top rises up out of the zero surface and the rest is 
below. This top is the affinity region. 

As was shown in section 3, R/T is not a distance function. However, R/T can be 
used to define an affinity function with dXOR as the underlying distance function. This 
affinity function is denoted by R/T-aff. R/T-aff is clearly a complementarity based 
affinity because R/T(x, x) = 1 (the maximum value) and R/T(x, compl(x)) = 0 as stated 
above. R/T-aff can be written in the form: 
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( ) ( ) ( )( )( )xi
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tcomplTRtaffTR

⋅+⋅
⋅−⋅=

=−
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With this modification of R/T the affinity function can adopt negative values, which 
the function R/T itself in a Hamming space could not. It is zero if ones(XOR(compl(i), 
x) = b(t)⋅n/a(t) and positive if ones(XOR(compl(i), x) < b(t)⋅n/a(t) and this holds for 
vectors that differ in less than b(t)⋅n/a(t) components from compl(i). So, figuratively 
spoken, the iceberg is elevated to a higher level. 

To summarize, R/T-aff with the above modification is similar to the affinity 
function of equation (27), except for the denominator. This is an interesting result 
because Bersini on one side and Rogers and Tanimoto on the other side clearly had 
rather different starting points and intended to do different things, but both developed 
functions that - put down to their principles (and applied to Hamming shape-spaces) - 
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are very similar. However, there is a difference between both functions because the 
function of (27) decreases linearly from the center to the border of the affinity region, 
whereas the function of (28) decreases exponentially as can be seen from figure 7. 

5   Conclusion 

General aspects of the structure and the dynamics of shape-spaces were presented in 
this paper. Emphasis was laid on a clear definition of distance functions and it was 
argued that in ℜn-based shape-spaces only metrics should be used as such functions. 
It was shown that ε-balls (used as recognition regions) have different shapes depend-
ing on the type of the distance function. Several distance functions used in Hamming 
shape-spaces were examined and it turned out that not all of them are metrics. 

With respect to the dynamics, an affinity function was defined as a function by 
which an element i exerts affinity on other elements and its value is determined by the 
distance between i and the other elements. The distance determines the shape of the 
recognition or affinity region of i, and the affinity function its varying size. It was 
illustrated which impact different distance metrics have on affinity functions. In 
particular it was shown how the similarity measure of Rogers and Tanimoto, though 
not being a distance function, can be used to define an affinity function. 

The affinity function is the basis for the definition of the dynamics of a shape-
space. This has to be worked out in more detail, which means, it must be described 
how the functions a(t) and b(t) change over time. In [1] they are linked to each other. 
This has the advantage that the size of the affinity region can be kept fixed and only 
the function a(t) (or C(i, t)) has to be defined. In [1], it is defined as a function of the 
total affinity exerted on an immune element i by all other immune elements. 

In a further developed simulation system the influence of the affinity on the 
concentration of elements should be defined in a more elaborated way. For instance 
the influence of other elements like cytokines, which have a different dynamics, 
should be taken into account. The concentration of antigens should be treated 
differently from that of the antibodies (as is already done in [1]) and it should be 
taken into consideration that it cannot only decrease but also increase which means 
that the immune response fails. 
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Abstract. Network Intrusion Detection Systems (NIDS) monitor a net-
work with the aim of discerning malicious from benign activity on that
network. While a wide range of approaches have met varying levels of
success, most IDS’s rely on having access to a database of known attack
signatures which are written by security experts. Nowadays, in order to
solve problems with false positive alerts, correlation algorithms are used
to add additional structure to sequences of IDS alerts. However, such
techniques are of no help in discovering novel attacks or variations of
known attacks, something the human immune system (HIS) is capable
of doing in its own specialised domain. This paper presents a novel im-
mune algorithm for application to an intrusion detection problem. The
goal is to discover packets containing novel variations of attacks covered
by an existing signature base.

Keywords: Intrusion Detection, Innate Immunity, Dendritic Cells.

1 Introduction

Network intrusion detection systems (NIDS) are usually based on a fairly low
level model of network traffic. While this is good for performance it tends to
produce results which make sense on a similarly low level which means that a
fairly sophisticated knowledge of both networking technology and infiltration
techniques is required to understand them.

Intrusion alert correlation systems attempt to solve this problem by post-
processing the alert stream from one or many intrusion detection sensors (perhaps
even heterogeneous ones). The aim is to augment the somewhat one-dimensional
alert stream with additional structure. Such structural information clusters alerts
in to “scenarios” - sequences of low level alerts corresponding to a single logical
threat.

A common model for intrusion alert correlation algorithms is that of the
attack graph. Attack graphs are directed acyclic graphs (DAGs) that represent
the various types of alerts in terms of their prerequisites and consequences.
Typically an attack graph is created by an expert from a priori information
about attacks. The attack graph enables a correlation component to link a given
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alert with a previous alert by tracking back to find alerts whose consequences
imply the current alerts prerequisites. Another feature is that if the correlation
algorithm is run in reverse, predictions of future attacks can be obtained.

In implementing basic correlation algorithms using attack graphs, it was dis-
covered that the output could be poor when the underlying IDS produced false
negative alerts. This could cause scenarios to be split apart as evidence sugges-
tive of a link between two scenarios is missing. This problem has been addressed
in various systems [8,6] by adding the ability to hypothesise the existence of the
missing alerts in certain cases. [7] go as far as to use out of band data from a
raw audit log of network traffic to help confirm or deny such hypotheses.

While the meaning of correlated alerts and predicted alerts is clear, hypoth-
esised results are less easy to interpret. Presence of hypothesised alerts could
mean more than just losing an alert, it could mean either of:

1. The IDS missed the alert due to some noise, packet loss, or other low level
sensor problem

2. The IDS missed the alert because a novel variation of a known attack was
used

3. The IDS missed the alert, because something not covered by the attack graph
happened (totally new exploit, or new combination of known exploits)

This work is motivated specifically by the problem of finding novel variations
of attacks. The basic approach is to apply AIS techniques to detect packets
which contain such variations. A correlation algorithm is taken advantage of to
provide additional safe/dangerous context signals to the AIS which would enable
it to decide which packets to examine. The work aims to integrate a novel AIS
component with existing intrusion detection and alert correlation systems in
order to gain additional detection capability.

2 Background

2.1 Intrusion Alert Correlation

Although the exact implementation details of attack graphs algorithms vary, the
basic correlation algorithm takes an alert and an output graph, and modifies the
graph by addition of vertices and/or edges to produce an updated output graph
reflecting the current state of the monitored network system.

For the purposes of discussion, an idealised form of correlation output is de-
fined which hides specific details of the correlation algorithm from the AIS com-
ponent. This model, while fairly simple, adequately maps to current state of the
art correlation algorithms.

Firstly, as in [8], exploits are viewed as a 3-tuple (vuln, src, dst) where vuln is
the identity of a know exploit and src and dst refer to two hosts which must be
connected for the exploit to be carried out accross the network. An injective func-
tion “f” (ALERT → EXPLOIT ). This is because there may be several varia-
tions of a single exploit, each requiring a different signature from the underlying



Integrating Innate and Adaptive Immunity for Intrusion Detection 195

IDS and consequently producing distinct alerts. Parenthetically, many IDS sig-
natures contain within them meta-data such as the Bugtraq or Mitre Common
Vulnerabilities and Exposures (CVE) identification numbers which allows this
function to be implemented automatically.

With our assumptions stated we may proceed to define our correlation graph.
The output graph, G, is defined as a DAG with exploit vertices (Ve), condition
vertices (Vc) and edges (E):

G = Ve ∪ Vc ∪ E

Fig. 1. Example output graph (conditions are boxes and exploits are ellipses)

The two types of vertex are necessary for being able to represent both conjunc-
tive and disjunctive relations between exploits. As we can imagine by looking at
Figure 1, any number of exploits may lead to condition 3, namely compromise of
root privileges. This would mean that either the “AMSLVerify” exploit or some
other root exploit may precede “Mstream Zombie Download.” In another situa-
tion we may want “AMSLVerify” and some other exploit to be the precondition.
In this case we would simply introduce another pre-requisite condition for that
exploit alongside condition 3.

Each disconnected subgraph is considered as a threat scenario. That is to
say, a structured set of low level alerts which constitute a single logical attack
sequence.

There is a function “vertexstate” (V ERTEX → V ERTEXSTATE) which
returns a 3 valued type, {HY P, REAL, PRED} for hypothesised, real or pre-
dicted respectively. Condition vertices have a function “val” (V ERTEX →
BOOL) which tells us the value of the condition.

In addition to this, exploit vertices contain information about the computer
systems involved. Functions for retrieving source and destination addresses and
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ports are also provided. For the purposes of discussion we will assume that
monitored networks are using the familiar TCP/IP protocol suite. Consequently
we shall refer to these functions as “src”, “dst”, “srcport” and “dstport.”

2.2 Danger Theory

Over the last decade the focus of research in immunology has shifted from the
adaptive to innate immune system, and the cells of innate immunity has moved
to the fore in understanding the behaviour of immune system as a whole[2].
Insights gained from this research are beginning to be appreciated and modelled
at various levels by researchers building artificial immune systems.

The algorithm described in Section 3 incorporates at a conceptual level mech-
anisms from both the innate and adaptive immune system although, because of
the change in problem domain, these are implemented differently. This section
briefly reviews the biological processes and mechanisms which have been drawn
upon when designing the algorithm presented in this paper.

The biological immune system as a whole provides effective host defense
through the complex interaction of various immune system cells with themselves
and their environment, the tissue of the host organism. Dendritic cells (DCs),
part of the innate immune system, interact with antigen derived from the host
tissue and control the state of adaptive immune system cells.

Antigen is ingested from the extracellular milieu by DCs in their immature
state and then processed internally. During processing, antigen is segmented and
attached to major histocompatibility complex (MHC) molecules. This MHC-
antigen complex is then presented under certain conditions on the surface of the
DC. As well as extracting antigen from their surroundings, DCs also have recep-
tors which respond to a range of other signalling molecules in their milieu. Cer-
tain molecules, such a lipopolysaccaride, collectively termed pathogen-associated
molecular proteins (PAMPs[3]) are common to entire classes of pathogens and
bind with toll-like receptors (TLRs) on the surface of DCs.

Other groups of molecules, termed danger signals, such as heat shock proteins
(HSPs), are associated with damage to host tissue or unregulated, necrotic cell
death and bind with receptors on DCs. Other classes of molecules related to
inflammation and regulated, apoptotic cell death also interact with receptor
families present on the surface of DCs. The current maturation state of the DC
is determined through the combination of these complex signalling networks.
DCs themselves secrete cell-to-cell signalling molecules called cytokines which
control the state of other cell types. The number and strength of DC cytokine
output depends on its current maturation state.

T-cells, members of the adaptive immune system, have receptors which bind to
antigen presented in an MHC-antigen complex on the surface of DCs and respond
to the strength of the match between receptor and antigen. This response is
usually a change in the differentiation state of the T-cell. However, this response
is not solely determined by antigen, but also by the levels of cytokines sensed by
a range of cytokine receptors present on the surface of T-cells. These receptors
are specific for cytokines produced by DCs.
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In summary, DCs uptake and present antigen from the environment to T-cells.
Also, DCs uptake signals from the environment and produce signals which are
received by T-cells. The ultimate response of a T-cell to an antigen is determined
by both the antigen presented by the DC and the signals produced by the DC.
Section 3 below describes the implementation of this model in the context of a
computer intrusion detection problem.

3 The Algorithm

For this purpose the “libtissue” [9,10] AIS framework, a product of a danger
theory project [1], will model a number of innate immune system components
such as dendritic cells in order to direct an adaptive T-cell based response.
Dendritic cells will carry the responsibility of discerning dangerous and safe
contexts as well as carrying out their role of presenting antigen and signals to a
population of T-cells as in [4].

Tissue and Dendritic Cells. Dendritic cells (henceforth DCs) are of a class of
cells in the immune system known as antigen presenting cells. They differ from
other cells in this class in that this is their sole discernible function. As well as
being able to absorb and present antigenic material DCs are also well adapted
to detecting a set of endogenous and exogenous signals which arise in the tissue
(IDS correlation graph).

These biological signals are abstracted in our system under the following
designations:

1. Safe: Indicates a safe context for developing toleration.
2. Danger: Indicates a change in behaviour that could be considered patholog-

ical.
3. Pathogen Associated Molecular Pattern (PAMP)[3]: Known to be dangerous.

In our system a distinction is made between activation by endogenous danger
signals or through TLR receptors.

All of these environmental circumstances, or inputs, are factors in the life
cycle of the DC. In the proposed system, DCs are seen as living among the IDS
environment. This is achieved by wiring up their environmental inputs to changes
in the IDS output state. A population of DCs are tied to the prediction vertices
in the correlation graph, one DC for each predicted attack. Packets matching the
prediction criteria of such a vertex are collected as antigen by the corresponding
DC. These packets are either stored in memory or logged to disk until the DC
matures and is required to present the antigen to a T-cell.

Once a prediction vertex has been added to the correlation graph, the arrival
of subsequent alerts can cause that vertex to either be upgraded to an exploit
vertex, changed to a hypothesised vertex, or become redundant as sibling vertices
are so modified. These possible state changes will result in either a PAMP, danger
or safe signal respectively.
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These signals initiate maturation and consequent migration of the DC to a
virtual lymph node where they are exposed to a population of T-cells.

The signal we are most interested in is the PAMP signal, this occurs when a
predicted vertex becomes hypothesised. This provides us with a counterfactual
hypothesis to test, ie. “suppose a novel a variation of the attack was carried
out.” The hypothesis is not unreasonable since:

1. The exploit was predicted already therefore it’s prerequisites are met.
2. An exploit which depends on the consequences of the attack was carried out

therefore the consequences of the exploit are met.

However this is not enough for a proof, since the standard caveats about the
accuracy of the model hold. An attacker may, after all, attempt an attack whose
preconditions are not met, the attack will fail, but the IDS cannot know.

Antigen Representation. An important part of the design of an AIS is the
representation of the domain data. A number of choices are available [12,13]. For
this algorithm we chose to use a natural encoding for the problem domain.

Network packets are blobs of binary data, each one is decoded by the IDS. The
decoding process involves extracting, interpreting and validating the relevant
features for the purpose of matching the packet against the signature database.

Our proposed algorithm represents each packet as an array of (feature,val)
tuples. The array contains a tuple for all possible features and is ordered by
feature. Features can be either integers or character strings. Values may be set
to wildcards if the corresponding feature is not present in the packet.

This approach imposes a total order on the features. Such an order may be
based, for example, on position in the packet which in nearly all cases is invariant
and defined in protocol specifications.

Note that this representation shares structural similarities with the actual
signatures used in network IDS’s. The connection is elaborated in the following
sub-section.

T-cells. By the time a DC in our system has received a PAMP signal, matured,
migrated to a lymph node and bound to a T-cell it contains a number of candi-
date packets (our antigen) and an indication of which signal caused migration.
The simple T-cell model outlined in this paper only incorporates DC’s activated
by PAMPs.

The problem here is to select a subset of packets which may contain the novel
variation(s) we are looking for. The inverse of the “f” function in our correlation
algorithm provides a number of candidate signatures which may be used as a
starting point. Thus the additional context is used to significantly reduce the
search space in this phase of the algorithm.

In order to find these possible variations, a version of the IDS signature match-
ing algorithm is required which provides meaningful partial matching. Since most
signatures entail string searching or regular expression matching this is not a
trivial task. For now, it will suffice to simply sum the number of matching cri-
teria in each signature for each packet. If a match is sufficiently close, all the



Integrating Innate and Adaptive Immunity for Intrusion Detection 199

relevant data is output for further analysis. Since most signatures have less than
10 criteria, this may not be effective in all cases, due to the anticipated difficulty
in selecting good matching thresholds.

4 Experimental Results

In order to test the algorithm it is important to know how greatly the set of
candidate packets for novel attack variations can be reduced. We perform a
simple experiment to validate the algorithm in this way. We chose to prototype
the algorithm inside Firestorm[14], a signature matching IDS which uses the
de-facto standard snort[15] signatures.

A circa 2000 wu-ftpd[11] exploit called “autowux” is to be our novel variation
on the snort “FTP EXPLOIT format string” signature (figure 2). These exploits
share the same attack methodology, namely exploiting format string overflows
in the File Transfer Protocol (FTP) “SITE EXEC” command.

alert tcp $EXTERNAL NET any -> $HOME NET 21 (msg:‘‘FTP EXPLOIT format
string’’; flow:to server,established; content: ‘‘SITE EXEC |25 30 32 30
64 7C 25 2E 66 25 2E 66 7C 0A|’’; depth: 32; nocase;)

Fig. 2. Generic snort signature for FTP format string exploits

The IDS is loaded with a full signature set and is tested to make sure that
the autowux exploit packets are not already detected. A contrived attack graph
with 3 exploits is also created (see figure 3). An nmap scan is the prerequisite
and vulnerability to rootkit installation is the consequence of our “novel” FTP
exploit.

The attack scenario is successfully played out across an otherwise quiet test
network (run #1). The attack contains on the order of three thousand packets
and the problem should be fairly simple because in the absence of background
noise a high proportion of the packets are part of the FTP attack (975 of them
to be precise). To make things more realistic, a second run of the experiment
is carried out in which there is background FTP traffic to our vulnerable host.
The background traffic is from the Lincoln Labs FTP data-set[16].

The two data sets were merged based on time deltas between packets, the
start packets are synchronised. This provides a realistic and repeatable mix of
benign and attack traffic (run #2).

The table below gives initial results for the prototype implementation based
on a number of uncontrolled experiments. Total packets is the total number of
packets in the merged data set, Ag packets refers to candidate packets in the DC
and output packets refers to the final results - ie. those packets in which there is
a suspected novel variation of an attack. False positive (FP) and false negative
(FN) rates are calculated through manual analysis of the output. In this case,
there is one true positive in each data set so all candidate output packets that
are not true positives are false positives, so the rate is calculated with n−1

n .
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Fig. 3. Contrived attack graph used for experimental purposes

Run #1 is performed on a quiescent network, run #2 is with background
traffic as described above.

Table 1. Accuracy of Algorithm with and without Background Traffic

Run Total Packets Ag Packets Output Packets FP Rate FN Rate
#1 3,000 975 18 94% 0%
#2 18,000 8,000 30 96% 0%

The table shows that the packets of interest are extracted (eg. 975 / 3000)
and that after further processing this is reduced to a mere handful of packets
(eg. 18). Overall the detection rate is good, despite the high false positive rates
(eg. 94%) which are inherent in the problem.

5 Conclusions and Future Work

In summation, a novel intrusion detection algorithm was presented drawing on
theoretical models of innate immunity. The algorithm incorporates within it ex-
isting IDS algorithms, but expands on their capability in a limited area, detection
of unknown (or 0-day) attacks which are based on other attacks that are previ-
ously known to the IDS. The AIS neatly interfaces with the problem domain by
treating internal IDS data structures as an artificial tissue environment. Finally
the algorithm was evaluated in terms of how accurately the novel variations can
be identified.
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It should be noted that the results are not directly comparable to other IDS
algorithms as the problem being solved is uniquely circumscribed. Rather than
designing an anomaly detection algorithm to find previously unknown attacks,
a misuse detector and alert correlator are extended to detect a certain kind of
anomaly arising from the incomplete models that are invariably used with such
algorithms.

Initial results are promising despite the high false positive rate. However since
the output is already clustered (all packets which were in a given DC are linked
together) it means that as long as there is an upper bound on false positives and
the false negative rate is low, there will usually be an accurate detection among
each such cluster.

The DCs in the presented model are able to detect specific anomalous patterns
of tissue growth and identify where and when novel attacks are taking place.
After a DC has made an initial selection of candidate packets, it is then the
responsibility of the T-cells to reduce the number of packets still further by
detecting structural similarities in the data. DCs are concerned primarily with
detecting abnormal behaviour within their environmental context, whereas T-
cells are concerned primarily with discerning patterns within the antigen data.
The co-ordination of both types of immune cell with each other and the tissue
through orthogonal programming interfaces make for neat and efficient solution.

Further investigation in to the T-cell phase of the algorithm should be fruitful.
The algorithm presented in this paper is fairly basic and does not incorporate
meaningful partial matching which is important for performance and accuracy.
A tolerance mechanism might also be useful in integrating the information con-
veyed by the safe and danger signals to further improve the false positive rate
in the difficult cases where malicious traffic differs only slightly from legitimate
traffic. Future testing should also incorporate historically problematic attack
variations in order to provide a more realistic appraisal of the algorithm.

A mechanism for the automated generation of signatures for the novel vari-
ations discovered by the algorithm would be ideal. Work such as [17] shows us
that this should, in theory, be possible with acceptable precision.
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Abstract. Self-Tolerance is a key issue in Hardware Immune Systems. Two 
novel detector set updating strategies are proposed in this paper as approaches to 
the self-tolerant problem in Hardware Immune Systems. Compared with 
previous detector set updating strategies, results of simulation experiments show 
that the detector sets being updated by the new strategies are less affected by the 
growing of the self set, and have a better coverage on the non-self space. 
Moreover, the improvement is notable when the self set is unavailable during the 
updating of the detector set. 

1   Introduction 

Hardware Immune System (HIS) is a branch of Artificial Immune Systems. Inspired by 
the human immune system, a hardware immune system is an approach to hardware 
fault tolerance, in which the human immune system is mapped to a hardware 
representation to develop fault detection mechanisms for reliable hardware systems. So 
far, many works about hardware immune system have already been done. The concept 
of Immunotronics is proposed by Bradley and Tyrrell, which is claimed as a novel 
fault-tolerant hardware inspired by immune principles [1, 2]. Canham and Tyrrell 
proposed a multi-layered hardware artificial immune system based on Embryonic 
Array [3]. Canham and Tyrrell also developed a novel artificial immune system that has 
been applied to robotics as an error detection system [4]. Bradley and Tyrrell proposed 
the architecture for a hardware immune system [5], and they also proposed a novel 
hardware immune system for error detection on a benchmark state machine [6]. 
Tarakanov and Dasgupta proposed architecture for immunochips [7]. 

However, little works are concerned on the self-tolerant problem in HIS under 
dynamic environments. Inspired by the co-stimulation mechanism which is used to 
maintain self-tolerance in biological immune systems, algorithms for dealing with the 
self-tolerance problem in hardware immune system is proposed in [8, 9], and the 
simulation experiments are carried out on the HIS architecture proposed by Bradley 
and Tyrrell [1, 5, 6]. The Concurrent Error Detection (CED) [10] is applied to generate 
co-stimulations (the second signal), and the FSM (Finite State Machine) model is 
adopted by the experimental system. However, when the growing self set results in 
some false positives, current strategies for the self-tolerant problem just recruit 
detectors randomly [8], or even do not recruit any detector [9]. In fact, many works 
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about Negative Selection Algorithm (NSA) [11, 12] have been done [13-16], and some 
of them can be applied to solve the self-tolerant problem. D’haeseleer proposed a 
method for counting the number of holes, and presented a greedy algorithm that 
attempts to reduce the size of the detector set [13]. Zhou and Dasgupata proposed an 
NSA with variable-coverage detectors in real-valued space [14, 15]. Zhang et al. 
presented the r-Adjustable NSA in binary string space [16], etc. However, with 
methods in [13-16], the problem with holes can be only partially avoided by 
non-autoimmune systems in static environments. Furthermore, in dynamic 
environments, the self set could change. Therefore, apart from the detector set 
generation algorithms, the detector set updating strategy is very important for the 
application of NSA in dynamic environments, and it is a key issue for the self-tolerant 
problem. 

Aiming at the self-tolerant problem in dynamic environments (in which the self set 
will grow during detection), two detector set updating strategies are proposed in this 
paper. One of them is inspired by the variable matching length mechanism [14-16], the 
other just removes the self pattern by stuffing some bits of detector with special 
symbols. These two novel strategies are compared with the works in [8] and [9]. 
Results of emulation experiments show that the detector sets being updated by the new 
strategies are less affected by the growing of the self set, and have a better coverage on 
the non-self space. 

Section 2 briefly introduces the self-tolerant problem and some efforts already made 
by researchers. Two novel detector set updating strategies are described in detail in 
section 3. Section 4 is devoted to demonstrating the simulation experimental results. 
Discussions are given in section 5. Conclusions and future works are given in section 6. 

2   Self-tolerance Problem of HIS in Dynamic Environments 

Generally the biological immune system is tolerant of the self, i.e. it does not attack the 
self. But a small quantity of lymphocytes may bind to self and the body will be attacked 
by the immune system, this response is called autoimmunization. In general, all 
lymphocytes will suffer the process of negative selection. However, there are still some 
lymphocytes matching the self released to the blood circulation. The peripheral 
self-tolerance can be dynamically maintained by a mechanism called co-stimulation. 
For example, B-cells can be activated only when they receive the first signal from 
captured pathogens and the second signal from lymphocytes called helper T-cells in the 
same time. The helper T-cells will provide second signal only if they recognizes the 
pathogens captured by B-cells as non-self. [17] 

In hardware immune systems, if the known self set (the set of known valid state 
transitions) is incomplete, after the filtration process of the detector set, some detectors 
may recognize unknown valid state transitions as non-self (invalid state transitions) and 
give a wrong alarm (a false positive). A co-stimulation mechanism has been developed 
to maintain the tolerance of self [8, 9]. 

Self-tolerant problem is an essential issue in both biological immune systems and 
hardware immune systems under dynamic environments. When the self set grows, the 
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detector set updating strategy is a key component in hardware immune systems. A good 
detector set updating strategy should have the following characteristics. 

(1) It should maintain a low false positive ratio when the new self individual is 
collected. “False positive” means recognizing a self individual as a non-self. 

(2) It should maintain a low false negative ratio after the detector set is updated. 
“False negative” means recognizing a non-self individual as a self. 

(3) The false negative ratio will not clearly increase even if the self set is 
unavailable. 

(4) It has reasonable time and space complexities, and can be easily implemented in 
hardware immune systems. 

In [9], during the detection process, if a detector is activated by a state transition 
without a co-stimulation signal, it will be deleted from the detector set, and the failure 
probability of detecting an invalid state transition (the false negative ratio) will be 
clearly increased. In the ASTA-CED algorithm proposed in [8], if a detector is deleted, 
a new detector generated randomly will replace the deleted one. But in some cases a 
new detector can not be generated easily. Moreover, the self set must be kept by the HIS 
because the newly generated candidate detector should be filtered by the self set to 
make sure it will not match a known self individual. This is a very time consuming 
operation, and is not practical for some hardware immune systems. 

Two novel detector set updating strategies are introduced in this paper, and 
compared with the strategies in [8] and [9]. The experimental results show that the 
detector sets being updated by these two novel strategies are less affected by the 
growing self set, and have a better coverage on the non-self space. 

3   Detector Set Updating Strategies 

Before introducing the two novel detector set updating strategies in this section, some 
symbols used in this paper are defined as following. 

r: Matching length threshold. Note that r-continuous-bits matching rule [11] is 
adopted in this paper. 

st: State transition. Here a state transition means a 0/1 string to be monitored [8]. 
l: The string length of a detector. 
m: Maximum continuous matching length between two strings in the corresponding 

positions. 
S: Set of self strings. 
R0: Immature detector set. 
R: Mature detector set. 
NR0: The number of immature detectors. 
NR: The number of mature detectors. 
NS: The size of the self set. 

The overall flowchart of the detector set detecting and updating process is described 
in Fig. 1. And the process is described as following [8]. 
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(1) Perform partial matching between state transitions and detectors one by one. 
(2) If a detector d matches a state transition st, go to (3), or else back to (1). 
(3) Report the error. If there is a co-stimulation signal, go to (1). 
(4) Update S by inserting st into it. 
(5) Detector set updating strategy: Update R with the updated S. Using the current 

R as immature detectors set R0, every detector in R undergoes a filtration process to 
avoid matching a known self string. If any detector is deleted, try to generate a new 
detector. 

(6) Go to (1). 

The different detector set updating strategies can be adopted at step (5). In the 
following subsection 3.1 and subsection 3.2, two novel detector set updating strategies 
are introduced. 

 

Fig. 1. Flow of detecting and updating process [8] 

3.1   Strategy I: Increasing the Partial Matching Length Threshold 

The variable matching length mechanism [14-16] is applied in strategy I to perform the 
detector set updating operation. The following process is the filtration process of a 
detector in the detector set being updated. If a detector d of the current detector set 
matches a self string, it will undergo such a filtration process. 

(1) Get the maximum matching length m between d and the self string. 
(2) If m=l, delete d and generate a new detector, or else set the partial matching 

threshold of d to m+1. 
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The following is the process of trying to generate a new detector when an old 
detector is deleted in the filtration process listed above. 

(1) Generate a new detector d’ randomly. 
(2) If d’ is already included in the current set R, delete it and go back to (1). 
(3) Perform partial matching between d’ and elements in S one by one, get the 

maximum matching length m’, if m’ = l, go back to (1). 
(4) Set the matching length threshold of d’ as r’ = m’ +1, add d’ to R. 

Since this process could be time consuming, to limit the time cost for generating a 
new detector, when an old detector is deleted in the updating process, step (1)-(3) in this 
process will be performed for only a small constant number of cycles. 

3.2   Strategy II: Stuffing Some Bits of Detector with a Special Symbol 

Firstly, it is assumed that when a detector d (11100111) matches a self string 
(00100110), the matching bits will be (10011), the maximum continuous matching 
length m=5. If the indices of a detector’s bits start from 1, the matching start point p=3. 
The filtration process of a detector is given as follows. 

If a detector d matches a self string, some selected matching bits of d will be stuffed 
with a special symbol. For convenience, the special symbol is indicated by ‘#’ in this 
paper. Stuffing a matching bit with ‘#’ makes this bit can not match either ‘0’ or ‘1’. 
Other matching bits can be kept unchanged. Therefore, the segment that consists of the 
maximum continuous matching bits and represents some self patterns, is destroyed by 
the stuffed ‘#’. And some of useful non-self patterns in this detector are reserved. The 
key problem is how to choose the minimum number of bits to be stuffed with ‘#’, and 
these bits could destroy the self patterns and remain the largest number of non-self 
patterns in this detector. 

 

Fig. 2.  Choose one bit to be stuffed with ‘#’ when m<2r. ‘#’ indicates a symbol other than ‘0’ 
and ‘1’. Stuffing a matching bit with ‘#’ makes this bit can not match either ‘0’ or ‘1’. 

Firstly, we consider m<2r, then stuffing just one matching bit with ‘#’ will be 
enough. As shown in Fig. 2, if l=10, r=6, p=3 and m=7, replacing the 8th bit with ‘#’ is 
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the best choice, because it has the least number of deleted patterns. When m <2r, the 
filtration process can be described as following. 

(1) Get the matching start point p and the maximum continuous matching length m 
between the detector d and the matched self string. 

(2) If 2+−−≤ mplp , stuff the (p+m-r)-th bit of d with ‘#’, or else stuff the 
(p+r-1)-th bit of d with ‘#’. 

(3) If the maximum length of contiguous 0/1 bit in d is shorter than r, delete d and 
try to generate a new detector. 

When rm 2≥ , set all bits between (p+r-1, p+m-r) as ‘#’. Obviously, it is very 
simple when rm 2≥ . 

Notable, only one segment that the number of the maximum continuous matching 
bits is no smaller than r, has been considered above. However, when r is small and l is 
relative large, the number of such segments is possibly more than one. If there are two 
or more segments of the maximum continuous matching bits not shorter than r, 
methods for finding the bits to be stuffed by ‘#’ can be designed according to the same 
idea described above.  

Note that if the maximum length of contiguous 0/1 bit in d is shorter than r, the bit 
replacing operation has made detector d useless because it can not match any 
self/non-self string in the string space, then d must be deleted and a new detector should 
be try to be generated. 

The following is the process of trying to generate a new detector when a detector is 
deleted in the process of strategy II. This algorithm is described below. 

(1) Generate a new detector d’ randomly. 
(2) If d’ is already included in the current set R, delete it and go back to (1). 
(3) Perform partial matching between d’ and strings in S one by one, if d’ matches 

any self string, perform the above filtration process of strategy II on d’. If d’ is 
deleted in the filtration process, go to (1). 

(4) Add d’ to R. 

To limit the time cost for generating a new detector, when an old detector is deleted 
in the updating process, step (1)-(3) in this process will be performed for only a small 
constant number of cycles. 

4   Simulation Experiments 

To show the improvements of these two novel detector set updating strategies, they are 
compared with the strategy used by ASTA-CED algorithm [8] which just delete a 
detector matching self and try to generate a new one randomly. Binary strings in form 
of “previous state/current state” are used for representing state transitions and 
detectors. The framework of the simulation experiment system used in [8, 9] is adopted 
with some modifications here, as shown in Fig 3. 
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In Fig. 3, when a detector matches a state transition string from the FSM, the first 
signal will be sent to the controller, and the parity checking result from CED module 
will be sent to the controller as the second signal (co-stimulation). According to the first 
and second signals, the controller will update the detector set R if necessary. In the 
updating process of R, the state transition string causing false positive will be collected 
by the self set S as a new self string, and R will be filtered with S. The results record 
module is used for collecting the performance datum of the system. 

 

Fig. 3. Simulation experiment system. Different from [8, 9], the self set S is kept by the system, it 
is used for the filtration process of detector set R in detector set updating steps. 

The length of the bit-string is 16, and then the size of string space O is 216. The 
“r-continuous-bits” matching rule is adopted here and the initial value of matching 
length threshold r is fixed to 12. 

The detector set updating strategy of ASTA-CED in [8] is temporarily denoted as 
strategy 0 in these experiments. For convenience, in all tables about experimental 
results, number 0 denotes strategy 0, I denotes strategy I, and II denotes strategy II. 

In an independent run, three strategies have identical initial detector set, which is 
generated randomly and has r=12. The number of self strings NS is fixed at 3000. The 
self set of every independent run is generated randomly, and is identical for both the 
three strategies. The parameter a, which is the proportion of self strings already known 
in advance among the complete set of self strings, is set to {0.9, 0.8, …, 0.1} for 
observing the change of the results against it. 

Every state transition of the whole string space appears once in an independent run, 
in which the detector set is updated according to different strategies. The process for 
generating a new detector will be performed for only 1 cycle when an old detector is 
deleted from current detector set R in its updating process. 

The results take the average values over 10 independent runs for every value of a. 
There are two parameters taken to make the comparisons: NR and C. NR is the number 
of mature detectors. C is the number of total invalid state transitions covered by the 
detector set, which represents the non-self coverage degree. And C is the variation 
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between the initial C at the start of an independent run and the final C at the end of the 
independent run, it can be defined as finalinitial CCC −=Δ . The C also indicates the 
increasing on the number of false negatives of the strategies. 

To prove that the detector sets being updated by the new strategies are less affected 
by the growing self set, and have a better coverage on the non-self space, comparisons 
on C and changes of NR after detector sets have been updated by the three strategies 
are given in the following two subsections. In subsection 4.1, the three strategies are 
compared when initial NR is fixed, and it can be found out that the C and the change 
on NR of the new strategies are smaller than that of strategy 0. In subsection 4.2, the 
comparison in subsection 4.1 are repeated when the self set is unavailable during the 
updating process of detector set, and similar results are found. 

4.1   Comparisons When Initial NR Is Fixed 

In this subsection, the experiment is carried out to make the comparisons on C when 
three strategies have the same initial number of detectors (NR). The initial NR is set to 
6000 in this experiment. 

Table 1. Comparison on average C over 10 independent runs when initial NR is fixed to 6000. 
Standard deviations are also listed in this table. 

a 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 
Ave 3696.9 7359.7 10799.0 14481.0 17301.0 20680.0 23152.0 25968.0 28002.0 

0 
Std 315.38 365.71 230.93 359.13 426.68 358.01 819.97 990.19 517.75 
Ave 2572.2 5059.1 7142.5 9176.5 10788.0 12395.0 13779.0 15120.0 16279.0 

I 
Std 173.71 228.14 133.40 211.05 204.12 225.29 406.82 401.01 338.85 
Ave 1002.2 1725.5 2133.8 2850.7 3382.9.0 3930.0 4564.2.0 5477.0 6152.0 

II 
Std 101.63 198.10 259.85 314.03 282.94 372.59 247.63 242.43 173.06 

Table 1 shows the comparison between the three strategies on average C, the 
standard deviations are also listed. It can be observed that the values of C in the 
results of strategy I and II are lower than that of strategy 0. It means that the increasing 
on false negative ratio of these two novel strategies is lower than that of strategy 0, i.e. 
the non-self space coverage of the detector sets being updated by these two new 
strategies are less affected by the growing of self set. And it can be also seen that 
strategy II is much better than strategy I from the C 's point of view. 

Table 2 lists the average values of final NR of three strategies after 10 independent 
runs against values of a, the average numbers of deleted detectors and regenerated 
(rebirth) detectors are also given, and standard deviations are listed as well. It can be 
found out that more existent detectors are reserved by strategy I and II during the 
detector set updating process, i.e. the detector set being updated by the two new 
strategies are less affected by the growing of self set. And strategy I is a little better than 
strategy II from the NR 's point of view. 
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Table 2. The average values of the final NR over 10 independent runs against values of a when 
initial NR is fixed to 6000. The average numbers of deleted and regenerated (rebirth) detectors are 
also given in this table. Standard deviations are listed as well. 

a  0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 
Ave 1254.6 2240.7 3110.2 3769.0 4452.2 5100.9 5809.9 6560.7 7484.0 

Deleted 
Std 92.292 76.472 69.624 56.115 45.013 99.669 41.439 75.025 41.355 
Ave 56.1 156.4 335.2 512.4 796.2 1148.5 1620.2 2217.1 3054.9 

Rebirth 
Std 7.125 10.146 11.114 20.764 41.787 55.838 46.913 50.516 58.872 
Ave 4801.5 3915.7 3225.0 2743.4 2344.0 2047.6 1810.3 1656.4 1570.9 

0 

Final 
Std 93.131 80.758 71.273 48.040 43.581 57.456 42.802 56.545 53.217 
Ave 29.5 57.9 91.7 117.4 137.0 170.9 202.5 223.8 250.1 

Deleted 
Std 4.720 6.540 8.744 5.190 11.195 13.731 14.183 8.779 17.188 
Ave 28.5 55.3 87.4 113.6 132.7 165.2 196.2 217.2 244.2 

Rebirth 
Std 5.523 6.516 8.566 5.481 11.786 12.621 14.070 8.804 16.396 
Ave 5999.0 5997.4 5995.7 5996.2 5995.7 5994.3 5993.7 5993.4 5994.1 

I 

Final 
Std 1.155 1.430 2.003 2.150 2.057 2.791 1.636 2.989 2.079 
Ave 62.8 160.4 303.0 467.3 640.3 876.0 1115.0 1319.8 1591.6 

Deleted 
Std 13.887 12.572 26.546 23.171 20.575 38.335 31.027 37.821 48.761 
Ave 60.1 152.8 290.6 449.4 614.4 847.2 1080.2 1282.2 1544.0 

Rebirth 
Std 12.940 13.079 23.524 22.599 20.178 35.925 32.152 31.825 48.475 
Ave 5997.3 5992.4 5987.6 5982.1 5974.1 5971.2 5965.2 5962.4 5952.4 

II 

Final 
Std 1.767 1.713 5.103 2.767 4.654 4.517 5.051 7.058 8.181 

4.2   Comparisons When the Self Set Is Unavailable 

Another experiment is carried out without the self set being kept, i.e. information about 
known self set is unavailable when the detector set needs to be updated. In this case, the 
process for generating a new detector in strategy 0 of ASTA-CED [8] can not be 
performed here. It is noted that the essential difference between the detector set 
updating strategies in [8] and [9] is whether a new detector is tried to be generated when 
an old detector is deleted. Therefore, strategy 0 is transformed to the corresponding 
strategy in [9] now. For convenience, the detector set updating strategy in [9] is also 
denoted as strategy 0 in this subsection. The initial NR is still set to 6000. 

Table 3. Comparison on average C between the three strategies when the self set is unavailable 
during detection. Standard deviations are also listed. Results are got by 10 independent runs. The 
initial NR is still set to 6000. 

a 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 
Ave 3716.6 7524.7 11820.5 16091.9 20500.7 24944.4 29268.6 33805.7 38212.1 

0 
Std 262.52 330.46 396.11 379.30 776.78 481.05 771.70 785.90 785.43 
Ave 2587.8 5095.4 7468.4 9516.9 11432.6 13035.1 14485.4 15906.2 17111.4 

I 
Std 198.71 189.89 204.72 215.35 355.29 371.95 306.57 314.29 233.93 
Ave 1730.4 3522.4 5252.0 6827.9 8534.7 9950.0 11286.9 12893.0 14152.8 

II 
Std 147.07 85.57 241.13 186.86 213.49 313.52 180.50 329.17 231.70 



212 X. Wang, W. Luo, and X. Wang 

Table 3 shows the comparisons between three strategies on average values of C 
against a, and standard deviations are also given. It can be observed that C of strategy 
I and II is lower than that of strategy 0. It means that the increasing on false negative 
ratio of these two novel strategies is lower than that of strategy 0, i.e. the non-self space 
coverage of the detector sets being updated by these two new strategies are less affected 
by the growing self set. And strategy II performs better than strategy I from the C 's 
point of view. 

Table 4 shows the average values of final NR of the three strategies after 10 
independent runs, and standard deviations are also listed. It is shown that both strategy 
I and II can remain much more existent detectors than strategy 0, i.e. the detector set 
being updated by these two new strategies are less affected by the growing of self set. 
Moreover, strategy I is better than strategy II from the final NR 's point of view. 

Table 4. The average values of the final NR of three strategies after 10 independent runs against 
values of a when the self set is unavailable during the updating process of detector set. Standard 
deviations are also listed. The initial NR is still set to 6000. 

a 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 
Ave 4768.9 3846.0 3030.1 2391.0 1935.5 1536.4 1229.5 973.4 780.0 

0 
Std 125.629 53.177 84.856 68.772 43.844 33.500 55.588 44.425 44.390 
Ave 5971.9 5942.3 5916.5 5884.7 5852.9 5832.5 5802.4 5777.8 5755.6 

I 
Std 4.581 6.651 10.320 8.193 11.160 14.547 8.884 11.555 11.568 
Ave 5945.9 5845.6 5700.5 5527.9 5345.4 5166.9 4948.2 4733.9 4534.2 

II 
Std 11.893 22.102 29.579 28.707 31.146 47.569 27.971 46.912 49.041 

5   Discussions 

The self-tolerant problem is very important for hardware immune systems under 
dynamic environment. The ASTA-CED [8] adopted “r-contiguous-bits” matching rule 
to perform partial matching between detectors and antigens (i.e. invalid state 
transitions). Compared with the strategy without recruiting detectors in [9], although 
ASTA-CED has an increased accuracy of detection and a decreased ratio of false 
positives, it still has an increased failure detection probability (false negative ratio) due 
to the growing self set. 

This paper focuses on the self-tolerant problem in dynamic environments (in which 
the self set will grow during detection). Two novel detector set updating strategies for 
HIS are proposed, one of them is endowed with the variable matching length 
mechanism [14-16], the other just removes the self pattern by stuffing some bits of 
detector with special symbols. 

From the emulation experimental results listed above, it can be observed that, 
compared with strategies in [8] and [9], the non-self coverage of these two new 
strategies in this paper are less affected by the growing of the self set, and these two 
new strategies have a bigger coverage on non-self space. Moreover, the improvements 
are notable when self set is unavailable during the updating process of detector set. The 
results also indicate that, the advantages of these two new strategies are more obvious 
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when the parameter a is smaller, i.e., it is more necessary to use these two new strategies 
in HIS when the self set has a bigger potential of growing. And from the C 's point of 
view, the progress of strategy II is more notable than that of strategy I. 

In addition, strategy I needs an additional space to store every partial matching 
length of every detector. And strategy II needs two bits for every bit in a detector 
because ‘#’ is adopted. For example, “00” means ‘0’, “01” means ‘1’, and “11” (or 
“10”) means ‘#’. Therefore, the space costs of both strategy I and II are larger than that 
of strategy 0. Furthermore, the implementation complexities of strategy I and strategy 
II in hardware immune systems are also a little higher than that of strategy 0. However, 
compared with the advantages of these two new strategies, these disadvantages are not 
crucial factors in the implementation of many hardware immune systems. 

6   Conclusions 

Self-Tolerance is a key issue in the research of Hardware Immune Systems. Two novel 
detector set updating strategies are proposed in this paper. Compared with previous 
detector set updating strategies in [8] and [9], results of simulation experiments prove 
that, no matter the self set is available or not, the detector sets being updated by these 
two new strategies are less affected by the growing of the self set, and the new 
strategies have a clearly lower increasing on the false negative ratio in a dynamic 
environment. 

There are also some future works that should be studied for improvement, such as 
embedding these strategies into a real hardware immune system for special 
applications. 

Acknowledgements. This work is supported by National Natural Science Foundation 
of China (No.60404004) and Nature Science Major Foundation from Anhui Education 
Bureau (No. 2004kj360zd). 

References 

1. Bradley, D.W., Tyrrell, A.M.: Immunotronics - Novel Finite-State-Machine Architectures 
with Built-In Self-Test Using Self-Nonself Differentiation. IEEE Transactions on 
Evolutionary Computation, Vol. 6(3) (2002) 227-238 

2. Tyrrell, A.M.: Computer Know Thy Self!: A Biological Way to Look at Fault Tolerance. 
Proceedings of 2nd EuroMicro / IEEE Workshop Dependable Computing Systems (1999) 
129-135 

3. Canham, R., Tyrrell, A.M.: A Learning, Multi-Layered, Hardware Artificial Immune 
System Implemented upon an Embryonic Array. Proceedings of 5th International 
Conference on Evolvable Systems, ICES (2003) 174-185 

4. Canham, R., Jackson, A.H., Tyrrell, A.M.: Robot Error Detection Using an Artificial 
Immune System. Proceedings of NASA/DoD Conference on Evolvable Hardware (2003) 
199-207 

5. Bradley, D.W., Tyrrell, A.M.: The Architecture for a Hardware Immune System. 
Proceedings of 3rd NASA/ DoD Workshop on Evolvable Hardware. Long Beach, Cailfornia 
(2001) 193-200 



214 X. Wang, W. Luo, and X. Wang 

6. Bradley, D.W., Tyrrell, A.M.: A Hardware Immune System for Benchmark State Machine 
Error Detection. Proceedings of 2002 Congress on Evolutionary Computation. Honolulu, 
USA (2002) 

7. Tarakanov, A., Dasgupta, D.: An Immunochip Architecture and Its Emulation. Proceedings 
of NASA/DoD Conference on Evolvable Hardware (2002) 261-265 

8. Luo, W., Wang, X., Tan, Y., Zhang, Y., Wang, X.: An Adaptive Self-Tolerant Algorithm for 
Hardware Immune System. Proceedings of 6th International Conference on Evolvable 
Systems, ICES 2005. Spain (2005) 1-11 

9. Wang, X., Luo, W., Wang, X.: Research on an Algorithm with Self-Tolerant Ability in 
Hardware Immune System (in Chinese). Journal of System Simulation, Vol. 18(5) (2006) 
1151-1153 

10. Zeng, C., Saxena, N., McCluskey, E.J.: Finite State Machine Synthesis with Concurrent 
Error Detection. Proceedings of International Test Conference (1999) 672-679 

11. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-Nonself Discrimination in a 
Computer. Proceedings of 1994 IEEE Symposium on Research in Security and Privacy. Los 
Alamitos, CA (1994) 202-212 

12. D'haeseleer, P., Forrest, S., Helman, P.: An Immunological Approach to Change Detection: 
Algorithms, Analysis and Implications. Proceedings of 1996 IEEE Symposium on Security 
and Privacy. Los Alamitos, CA (1996) 110-119 

13. D'haeseleer, P.: Further Efficient Algorithms for Generating Antibody Strings. Tech. Rep. 
CS95-3. Dept. Comput. Sci., Univ. New Mexico (1995) 

14. Zhou, J., Dasgupata, D.: Augmented Negative Selection Algorithm with Variable-Coverage 
Detectors. Proceedings of Congress on Evolutionary Computation, CEC, Vol. 1 (2004) 
1081-1088 

15. Zhou, J., Dasgupata, D.: Real-Valued Negative Selection Algorithm with Variable-Sized 
Detectors. Proceedings of Genetic and Evolutionary Computation Conference, 
GECCO-2004. Seattle, Washington USA (2004) 287-298 

16. Zhang, H., Wu, L., Zhang, Y., Zeng, Q.: An Algorithm of r-Adjustable Negative Selection 
Algorithm and Its Simulation Analysis (in Chinese). Chinese Journal of Computers, Vol. 
28(10) (2005) 1614-1619 

17. Zhou, G.: Principles of Immunology (in Chinese). Scientific and Technical Documents 
Publishing House, Shanghai (2000) 



On the Use of Hyperspheres in Artificial
Immune Systems as Antibody

Recognition Regions

Thomas Stibor1, Jonathan Timmis2, and Claudia Eckert1

1 Department of Computer Science
Darmstadt University of Technology

{stibor, eckert}@sec.informatik.tu-darmstadt.de
2 Departments of Electronics and Computer Science

University of York, Heslington, York
jtimmis@cs.york.ac.uk

Abstract. Using hyperspheres as antibody recognition regions is an es-
tablished abstraction which was initially proposed by theoretical immu-
nologists for use in the modeling of antibody-antigen interactions. This
abstraction is also employed in the development of many artificial im-
mune system algorithms. Here, we show several undesirable properties
of hyperspheres, especially when operating in high dimensions and dis-
cuss the problems of hyperspheres as recognition regions and how they
have affected overall performance of certain algorithms in the context of
real-valued negative selection.

1 Introduction

Work in theoretical immunology has developed various representations for the
interactions between antibody and antigen, and affinity metrics for modeling
these such interactions. These antibody-antigen binding models were proposed
for describing antibody cross-reactivity and multi-specificity [1] or for estimating
the antibody repertoire size [2]. This work has provided much of the foundations
for the development of artificial immune system (AIS) [3].

AIS is a paradigm inspired by the immune system and is used for solving
computational and information processing problems. AIS exploit principles and
methods developed by theoretical and experimental immunology, and abstract
certain properties which can be implemented in computational systems [3]. In
this paper, the abstraction we will consider is the hypersphere. This abstrac-
tion of hyperspheres has been used in many artificial immune system algorithms
which have been applied to many areas such as anomaly detection, pattern recog-
nition and clustering problems [4,5,6,7,8,9]. In this paper we describe mathemat-
ical properties of hyperspheres, which manifest themselves in high-dimensional
space, and we provide suggestions on the applicability of hyperspheres as recog-
nition units. Moreover we discuss the applicability of hyperspheres in the context
of real-valued negative selection and explain reported poor classification results
shown in [6].
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The paper is organized as follows : In section 2 the real-valued shape-space
is outlined and the most commonly used Euclidean distance is presented. Sec-
tion 3 describes the abstraction of an antibody as a hypersphere. In section 3.1
the known hypersphere volume formula and the construction idea of that for-
mula is shown and properties of that formula are presented in section 4. Next,
the maximum volume of hyperspheres with respect to the dimension and the
radius is presented in section 4.1, and we highlight unexpected properties of
hyperspheres in high dimensions. In section 4.2, based on the mathematical
observations, implications on the use of hyperspheres as antibody recognition
regions are provided. We then present an algorithm for estimating, as opposed
to exactly calculating, the total space of overlapping hyperspheres (section 5).
Finally, results in sections 3.1, 4 and 5 are applied to explain in section 6 the
poor classification results shown in [6].

2 Real-Valued Shape-Space and Euclidean Distance

The notion of shape-space was introduced by Perelson and Oster [1] and al-
lows a quantitative affinity description between antibodies and antigens. More
precisely, a shape-space is a metric space with an associated distance (affinity)
function. The real-valued shape-space is the n-dimensional Euclidean space R

n,
where every element is represented as a n-dimensional point or simply as a vec-
tor represented by a list of n real numbers. The Euclidean distance1 d is the
(standard) distance between any two vectors x,y ∈ R

n and is defined as :

d(x,y) =
√

(x1 − y1)2 + . . . + (xn − yn)2 (1)

Moreover, the Euclidean distance d satisfies the metric properties :

non-negativity : d(x,y) ≥ 0
reflexivity : d(x,y) = 0 iff x = y
symmetry : d(x,y) = d(y,x)

triangle inequality : d(x,y) + d(y, z) ≥ d(x, z)

for all vectors x,y, z ∈ R
n

and therefore is frequently applied as a distance measurement in AIS algorithms.

3 Hyperspheres as Antibody Recognition Regions

In the original work by Perelson and Oster [1], real-valued shape-space is in-
troduced for estimating the probability that a randomly encountered antigen is
recognized by at least one of the antibodies. An antibody is specified by n param-
eters, e.g. the length, width, charge, etc. and can be described as a n-dimensional
1 Also termed Euclidean norm.
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point in the shape-space R
n. Furthermore, an antibody recognizes not only one

specific antigen, but several similar antigens which have a certain specificity —
this property is called cross-reactivity2. In [1] each antibody is represented as a
n-dimensional point and its (cross-reactivity) recognition space is modeled as a
hypersphere — called an antibody recognition region. Antigens which lie within
the hypersphere are recognized by the associated antibody. From an immuno-
logical point of view, antibodies recognize antigens which have a complementary
binding site instead of similar binding regions (see Fig. 1(a)). This inspired Hart
et al. [10] to develop a simulation to investigate empirically complementary bind-
ing properties in a immune network, with regard to emerging recognition regions.
Hart et al. reported that the resultant immune network depended very much on
the affinity metric employed (see [10] for further details).

h
h

h

ab

ab ab1

2

3

2 3

1

(a) Complementary antibodies
recognition regions. Antibodies
abi recognize all antigens which
lie within the complementary
hyperspheres hi

ab

1

ab

h1

2h

2

3

h3

ab

(b) Non-complementary an-
tibodies recognition regions.
Antibodies abi recognize all
antigens which lie within the
hyperspheres hi

Fig. 1. Real-valued Shape-Space with complementer and non-complementer antibody
recognition regions (modeling cross-reactivity)

For solving information processing problems, like pattern recognition, anomaly
detection and clustering problems, the complementary recognition approach is
possibly less appropriate, as it less obvious how one might employ such an
idea. For such problems, it is useful to recognize points which are similar in-
stead of complementary and therefore, similarity antibody-antigen recognition
approaches are typically applied (see Fig. 1(b)). More precisely, an antibody
can be represented as a hypersphere with center ab ∈ R

n and a radius r ∈ R.
An antigen ag ∈ R

n is recognized by an antibody ab, when it lies within the
hypersphere, i.e. d(ab,ag) ≤ r.

2 A well described explanation of the difference between cross-reactivity and multi-
specificity is provided in [1], page 661.
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3.1 Volume of Hyperspheres

The volume of a n-dimensional hypersphere with radius r can be calculated as
follows :

V (n, r) = rn · πn/2

Γ
(

n
2 + 1

)
where

Γ (n + 1) = n! for n ∈ N and

Γ (n + 1
2 ) =

1 · 3 · 5 · 7 · . . . · (2n − 1)
2n

√
π for half-integer arguments.

We briefly show the construction idea3 behind the the volume calculation of
hyperspheres. For a in-depth description see [11], where the complete construc-
tion and a proof is shown.

The volume V (n) of a n-dimensional unit sphere can be constructed inductively

V (2) = π

V (3) =
4
3
π

...

V (n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
πn/2

(n/2)! , n even

2nπ(n−1)/2 ((n − 1)/2)!
n! , n odd

Given a 2-dimensional unit circle

C2 = {(x1, x2) ∈ R
2 | x2

1 + x2
2 ≤ 1}

The volume V (C2) can be calculated as a summation of infinitely thin “stripes”.

V (C2) = 2 ·
∫ 1

−1

√
1 − x2

2 dx2

= 2 ·
∫ π

0

√
1 − cos2(t) sin(t) dt

= 2 ·
∫ π

0
sin2(t) dt

=
∫ π

0
dt = π

3 Taken from [11].
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V (C2) → V (C3)

V (C3) =
∫ 1

−1
π

(√
1 − x2

3

)2

dx3

= π

∫ 1

−1
(1 − x2

3) dx3

=
4
3
π

...

V (Cn−1) → V (Cn)

V (Cn) = V (Cn−1) ·
∫ 1

−1
(1 − x2

n)(n−1)/2 dxn

=
πn/2

Γ (n
2 + 1)

Proposition 1. The volume of a n-dimensional hypersphere with radius r is

V (n, r) = rn · πn/2

Γ
(

n
2 + 1

) (2)

Proof. see [11]

4 Curse of Dimensionality

The phenomenon “curse of dimensionality” was first mentioned by Bellman [13]
during his study of optimizing a function of a few dozen variables in an exhaus-
tive search space. For example, given a function defined on a unitary hypercube
of dimension n, in each dimension 10 discrete points are considered for evaluat-
ing the function. In dimension n = 2, this results in 100 evaluations, whereas in
dimension n = 10, 1010 function evaluations are required. In general, an exponen-
tial number of (1/ε)n function evaluations are required to obtain an optimization
error of ε and therefore is computationally infeasible, even for a moderate n.

This simple example shows how problems like function optimization, which
are computationally feasible in lower dimensions, transform to computation-
ally infeasible problems in higher dimensions. A similar phenomenon (but not
from the perspective of computational complexity) can be observed with hyper-
spheres in high-dimensional spaces, where they loose their familiar properties. In
high-dimensions R

n, i.e. n > 3, hyperspheres have undesirable properties. These
properties (the following corollaries) can be derived directly from proposition (1).

Corollary 1. The volume of hyperspheres converges to 0 for n → ∞.

lim
n→∞V (n, r) = 0



220 T. Stibor, J. Timmis, and C. Eckert

Proof.

limn→∞

⎛⎜⎜⎜⎜⎜⎜⎝rn · πn/2

Γ
(n

2
+ 1
)

︸ ︷︷ ︸
≈√

2πe−n n
n+1

2

⎞⎟⎟⎟⎟⎟⎟⎠

= 1√
2π

limn→∞

⎛⎜⎝ (

c︷ ︸︸ ︷
r e

√
π)n

nn+1
2

⎞⎟⎠ = 1√
2π

limn→∞
(

cn

nn+ 1
2

)
= 0

��
Corollary 2. The fraction of the volume which lies at values of the radius be-
tween r − ε and r, where 0 < ε < r is

Vfraction(n, r, ε) = 1 −
(
1 − ε

r

)n

Proof.

1 − V (n, r − ε)
V (n, r)

= 1 −

⎛⎜⎝ (r−ε)n·πn/2

Γ( n
2 +1)

rn·πn/2

Γ( n
2 +1)

⎞⎟⎠ = 1 −
(
1 − ε

r

)n

��
Corollary (1) implies that the higher the dimension the smaller the volume of a
hypersphere for a fixed radii. This property is investigated in more detail, in the
following section.
Corollary (2) reveals that in high-dimensional spaces, points which are uniformly
randomly distributed inside the hypersphere, are predominately concentrated in
a thin shell close to the surface or, in other words, at very high dimensions the
entire volume of a hypersphere is concentrated immediately below the surface.

Example 1. Given a hypersphere with radius r = 1, ε = 0.1 and n = 50 and
k points which are uniformly randomly distributed inside the hypersphere, ap-
proximately 1 − (1 − 0.1

1

)50 ≈ 99, 5 % of the k points lie within the thin ε-shell
close to the surface.

4.1 Volume Extrema

By keeping the radius fixed and differentiating the volume V (n, r) with respect
to n, one obtains the dimension4 where the volume is maximal :

∂

∂n

(
rn · πn/2

Γ
(

n
2 + 1

)) =
rn ln (r) πn/2

Γ
(

n
2 + 1

) +
rnπn/2 ln (π)
2 Γ

(
n
2 + 1

) − rnπn/2 Ψ
(

n
2 + 1

)
2 Γ

(
n
2 + 1

) (3)

4 The dimension is obviously a nonnegative integer, however we consider term (3)
analytically as a real-valued function.
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where Ψ(n) =
∂

∂n
ln Γ (n)

Vice versa, keeping the dimension fixed and differentiate term (2) with respect
to r, it is not solvable in roots, i.e. no extrema exists :

∂

∂r

(
rn · πn/2

Γ
(

n
2 + 1

)) =
rn n πn/2

r Γ
(

n
2 + 1

) (4)

For instance a hypersphere with radius r = 1 reaches its maximum volume in
dimension 5 and looses volume in lower and higher dimensions. In figure 2 this
property is visualized for different radius lengths r = {0.9, 1.0, 1.1, 1.2}. One can
see that for each radius length in dimension from n = 0 to n = 25, the associated
hypersphere reaches a maximal volume in a certain dimension and looses volume
asymptotically in higher and lower dimensions.

8

15

16

4

x
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20 2550 10

12

dimension 
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lu

m
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r = 1.1

r = 1.2

r = 1.0

Fig. 2. Hypersphere volume plot for radius lengths r = {0.9, 1.0, 1.1, 1.2} and dimen-
sion n = 0, . . . , 25. Obviously, n is a nonnegative integer, but the graph is drawn
treating n as continuously varying.

Table 1. Dimension where a hypersphere reaches the maximum volume for radius
lengths r = {0.05, 0.1, 0.2, . . . , 1.0}. Results are obtained by considering term (3) as a
real-valued function.

Radius r 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Dimension �n� -9.17 ·107 -88.94 1.59 1.12 1.0 1.03 1.20 1.53 2.14 3.23 5.27

Table 1 presents the dimension where a hypersphere reaches its maximum
volume for different radius lengths. Surprisingly, for radius lengths r = 0.05 and
r = 0.1 the maximum volume lies in negative real-valued numbers. Hence, a vol-
ume maximization for such small radius lengths is not feasible, as the dimension
is a nonnegative integer.
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4.2 Using Hyperspheres as Antibody Recognition Regions in
Artificial Immune Systems

The results and observations presented in sections 3.1, 4 and 4.1 indicate that
high-dimensional real-valued shape-spaces strongly bias the volume (recognition
space) of hyperspheres. A hypersphere, for example with radius r = 1 has a high
volume in relation to its radius length, up to dimension 15 (see Fig. 2). In higher
dimensions (n > 15), for r = 1 the volume is nearly 0. This means that the
recognition space — or in the context of antibody recognition region (covered
space) — is nearly 0. In contrast, a radius that is too large (r > 2) in high
dimensional spaces (n > 10) will imply an exponential volume. This exponential
volume behavior, in combination with an unprecise volume estimation of over-
lapping hyperspheres, is the reason for the poor classification results reported in
the paper [6] and is discussed in the subsequent sections.

5 Estimating Volume of Overlapping Hyperspheres

In section 3.1 a formula for calculating the exact volume of a hypersphere given
by the dimension and the radius was shown. However, many proposed arti-
ficial immune system algorithms for solving pattern recognition, anomaly de-
tection and clustering problems using not only one but multiple overlapping
hyperspheres for classifying points [4,5,6,7,8,9]. Calculating analytically the to-
tal volume of overlapping hyperspheres is a very difficult task. Just the simple
2-dimensional case of three overlapping circles with different radii is a mathe-
matical challenge. In the following section we describe a method to estimate the
volume of (overlapping) hyperspheres.

5.1 Monte Carlo Integration

The Monte Carlo Integration is a method to integrate a function over a com-
plicated domain, where analytical expressions are very difficult to apply – e.g.
the calculation of the volume of overlapping hyperspheres in higher dimensions.
Given integrals of the form I =

∫
X h(x)f(x)dx, where h(x) and f(x) are func-

tions for which h(x)f(x) is integrable over the space X , and f(x) is a non-
negative valued, integrable function satisfying

∫
X f(x)dx = 1. The Monte Carlo

integration picks N random points x1,x2, . . . ,xN , over X and approximates the
integral as

I ≈ 1
N

N∑
n=1

h(xn) (5)

The absolute error of this method is independent of the dimension of the space X
and decreases as 1/

√
N . By applying this integration method, two fundamental

questions arise :
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– How many observations should one collect to ensure a specified statistical
accuracy ?

– Given N observations from a Monte Carlo Experiment, how accurate is the
estimated solution ?

Both question are answered and discussed in [15]. Using the Chebyshev’s inequal-
ity and specifying a confidence level 1−δ, one can determine the smallest sample
size N that guarantees an integration error no larger than ε. In [15] this spec-
ification is called the (ε, δ) absolute error criterion and leads to the worst-case
sample size

N := �1/4δε2� (6)

5.2 Monte Carlo Hyperspheres Volume Integration

Using equations (5) and (6) a simple algorithm can be developed which esti-
mates the total space (volume) covered by the hyperspheres inside the unitary
hypercube [0, 1]n.

Algorithm 1. Monte Carlo Hyperspheres Volume Integration
input : H = set of hyperspheres, ε = absolute error of the estimated volume, δ

= confidence level
output: total volume of H
begin1

inside ←− 02

// calculate required worst-case
// sample size N
N ←− 	1/4δε2
3

for i ← 1 to N do4

x ←− random point from [0, 1]n5

foreach h ∈ H do6

if dist(ch,x) ≤ rh then7

// ch is center of h, rh is radius of h
inside ←− inside + 18

goto 5:9

return (inside/N)10

end11

6 Limitation of Real-Valued Negative Selection in Higher
Dimensions

In [6] an immune inspired real-valued negative selection algorithm was compared
to different statistical anomaly detection techniques5 for a high-dimensional
5 Parzen-Window, one class SVM.
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anomaly detection problem. The investigations observed that the poorest clas-
sification results were real-valued negative selection, when compared to the sta-
tistical anomaly detection techniques on a 41-dimensional problem set (see [6]
for further details). In this section, we attempt to explain this observation.

6.1 Real-Valued Negative Selection

The real-valued negative selection is an immune-inspired algorithm applied for
anomaly detection. Roughly speaking, immune negative selection is a process
which eliminates self-reactive lymphocytes and ensures that only those lympho-
cytes enter the blood stream that do not recognize self-cells6. As a consequence,
lymphocytes which survive the negative selection process, are capable of recog-
nizing nearly all foreign substances (like viruses, bacteria, etc.) which do not
belong to the body. Abstracting this principle and modeling immune compo-
nents according to the AIS framework [3] one obtains a technique for anomaly
detection :

– Input : S = set of points ∈ [0, 1]n gathered from normal behavior of a system.
– Output : D = set of hyperspheres, which recognizing a proportion c0 of the

total space [0, 1]n, except the normal points.
– Detector generation : While covered proportion c0 is not reached, generate

hyperspheres.
– Classification : If unseen point lies within a hypersphere, it does not belong

to the normal behavior of the system and is classified as an anomaly.

A formal algorithmic description of real-valued negative selection is provided
in [6].

6.2 Poor Classification Results

In [6] the real-valued negative selection technique (see section 6.1) was bench-
marked by means of ROC analysis on a high-dimensional anomaly detection
problem. The authors reported a detection rate of approximately 1 %− 2 % and
a false alarm rate of 0 % when applying the real-valued negative selection algo-
rithm. The false alarm rate of 0 % can be explained by learning 100 % of the
training data and benchmarking with the training and testing data — similar
false alarm rates results on other benchmarked data sets are reported in [5,16].
Benchmarking with 100 % training and testing data should be avoided, as in
general it results in a high overfitted learning model and no representative (clas-
sification) results on the generalization performance will be obtained.

Moreover, the authors in [6] reported steady space coverage problems: these
can be explained also by lack of precision when estimating the volume integra-
tion. Using term (6), which gives the worst-case sample size when given ε, δ, and
applying the inequality

N + 1 >
1

4δε2
⇐⇒ ε >

(
1

4δ(N + 1)

)1/2

(7)

6 Cells which belongs to the body.
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one can easily see why the authors in [6] reported such steady space coverage
problems for the estimated hyperspheres coverage of c0 = 80 %. For the parame-
ter c0 which was originally proposed in [5] one obtains according to [5,6] a sample
size of N = 1/(1 − c0) = 5. Evaluating term (7) with a given confidence level of
90 %, one obtains an integration error ε of greater than 65 %. Inequality (7) can
be used to explain the reported steady space coverage problems, however it does
not explain thoroughly the poor classification results described in [6] — this is
now explained by means of the results shown in sections 4 and 5.

Investigating the 41-dimensional data set [17], one can statistically verify7,
that the whole normalized non-anomalous class is concentrated at one place in-
side the unitary hypercube U = [0, 1]41. In [18] this characteristic is called“empty
space phenomenon” and arises in any data set that does not grow exponentially
with the dimension of the space.

In [6] the authors additionally reported, that the real-valued negative selec-
tion algorithm terminated when (on average) 1.4 detectors were generated. By
generating only one detector (hypersphere) with, for example, a radius r = 3
and a detector center which does not necessarily lie inside U , the volume of that
hypersphere amounts 5.11 · 1010. The unitary hypercube U = [0, 1]41 has a total
volume of 1, however most of the volume of a hypercube is concentrated in the
large corners, which themselves become very long “spikes”. This can be verified
by comparing the ratio of the distance

√
n from the center of the hypercube

to one of the edges to the perpendicular distance a/2 to one of the edges (see
Fig. 3).

(∑n
i=1(

a
2 )2
)1/2

a
2

=

(
n a2

4

)1/2

a
2

=
√

n where n is the dimension (8)

For n → ∞, the term (8) goes to ∞ and therefore the volume is concentrated in
very long “spikes” of U .

As a consequence, the hypersphere covers some of those (high-volume) spikes
which are lying within the Vfraction proportion of the hypersphere. Hence, the
real-valued negative selection algorithm terminates with only a very small num-
ber of large radii detectors (hyperspheres) which are covering a limited number
of spikes. As a result a large proportion of the volume of the hypercube does
not lie within the hyperspheres — it lies in the remaining (high-volume) spikes,
though the hypersphere volume is far higher than the hypercube volume.

These observations in combination with the unprecise volume integration of
overlapping hyperspheres results in the poor classification results reported in [6].

From our point of view, the real-valued negative selection would appear to
be a technique that is not well suited for high-dimensional data sets, i.e. data
dimensions far higher than 41 — a well established benchmark in the field of
pattern classification is for instance the problem of handwritten digit recognition,
the dimensionality of this problem domain is 256 [19,20]. We propose this is
in part because it makes more sense to formulate a classification model with
7 By means of covariance matrix.
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regard to the given training elements, instead of complementary space. The
complementary (anomalous) space is exponentially large when compared to the
“normal” space in high dimensions. The real-valued negative selection technique
attempts to cover this high-dimensional space with hyperspheres, but as we have
shown, these have adverse properties in such high-dimensional spaces.

a

√
n

a
2

Fig. 3. Distance ratio
√

n
a/2 between a line from center to a corner and a perpendicular

line from center to an edge

In [18] Verleysen discusses in detail, this curse of dimensionality problem, with
respect to artificial neural networks. He suggests in general to change the dis-
tance measure function for high-dimensional problems, for instance by applying
a higher-order norm (h > 2)

dh(x,y) = h

√
| x1 − y1 |h + . . .+ | xn − yn |h (9)

instead of the standard Euclidean norm. In the context of inductive biases8, Fre-
itas and Timmis [21] discussed different affinity measures in artificial immune
systems. They illustrated the advantages and disadvantages of the 1-norm and
2-norm (see term (9)) and showed how one of these norm when compared to the
other norm can lead to an overemphasizing of the distance. As a final summa-
rizing sentence, the authors suggested that when developing an AIS, one should
make a careful choice of the norm, as the norm should take into account the
characteristics (in our case the dimension) of the data being analyzed. Unfortu-
nately, there seems to be no theoretical results, for correctly choosing the value
h with regard to the data dimension [18].

7 Conclusion

The immune system is an impressive recognition system with many appealing
properties for the construction of artificial immune system algorithms. Abstract-
ing antibodies as hyperspheres and applying the Euclidean distance metric for
quantifying binding strengths, is an established method for modeling and simu-
lating the immune systems.
8 Effectiveness in problem domains.
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For developing competitive immune-inspired algorithms the antibody-antigen
representation and affinity metric is a crucial parameter. We have found that
applying the abstraction of these hyperspheres for immune-inspired algorithms
can lead to poor results, especially for high-dimensional classification problems.

In this paper, we have shown that these hypersphere have undesirable prop-
erties in high dimensions — the volume tends to zero and nearly all uniformly
randomly distributed points are close to the hypersphere surface. We have pre-
sented these hypersphere properties and have provided an explanation for poor
classification results reported in [6]. In addition, we have now explained the lim-
itations of the real-valued negative selection for high-dimensional classification
problems, when employing hyperspheres. There is no reason to suggest that the
hypersphere properties we have discussed in this paper, are not valid obser-
vations for all high-dimensional classification problems where hyperspheres are
applied as recognition regions. Therefore, as a result, these adverse hypersphere
properties could bias all (artificial immune system) algorithms, which employ
hyperspheres as recognition units.
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Abstract. Negative selection algorithm is one of the most important algorithms 
inspired by biological immune system. In this paper, a heuristic detector genera-
tion algorithm for negative selection algorithm is proposed when the partial 
matching rule is Hamming distance. Experimental results show that this novel 
detector generation algorithm has a better performance than traditional detector 
generation algorithm. 

1   Introduction 

Artificial immune system (AIS) is an emergent bio-inspired research field after artifi-
cial neural network and evolutionary computation, which is inspired by biological 
immune system [1-4]. Negative selection algorithm (NSA) has been proposed for 
more than ten years, which is one of the most important algorithms and components 
in artificial immune systems [5]. The detector generation algorithms for negative 
selection algorithm have been studied for years, too [2, 3, 6, 7]. S. Forrest and her 
colleagues proposed the linear time detector generation algorithm and the greedy 
detector generation algorithm for negative selection algorithm with the r-continuous-
bits partial matching rule [7]. The negative selection algorithm with r-chunk rule is 
proposed in [8], and the variable length detector for real-valued shape space is pro-
posed in [9-10]. T. Stibor and his colleagues analyzed the negative selection algo-
rithm theoretically in [11-12]. In addition, evolutionary negative selection algorithms 
that combine negative selection model and evolutionary operators are also investi-
gated [13]. These are typical works in this field. 

However, so far, when the partial matching rule is Hamming distance, there is no 
efficient detector generation algorithm. As for the previous detector generation algo-
rithm that proposed about ten years ago, it runs in exponential time with respect to the 
size of the self set [5, 7]. This paper concerns with an efficient detector generation 
algorithm for negative selection algorithm that adopts Hamming distance as its partial 
matching rule.  

The rest of this paper is organized as follows. Section 2 briefly introduces the tradi-
tional detector generation algorithm and its time and space complexities. The new 
heuristic detector generation algorithm is given in detail in section 3. In section 4, 
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some experiments are done to evaluate the performance of the heuristic detector gen-
eration algorithm proposed in this paper. Section 5 includes some discussions. The 
last section summarizes this paper with a brief conclusion and gives some future 
works. 

2   Exhaustive Detector Generation Algorithm for Negative 
Selection Algorithm with Hamming Distance Partial Matching 
Rule 

Negative Selection Algorithm (NSA) is a very significant change detection algorithm 
based on the generation process of T-Cells in biological immune system. 

NSA has three steps [5]. (1) Define the self set. Firstly it generates the self set ac-
cording to the normal data set.  (2) Generating detectors. (3) Monitoring the data that 
we want to protect with the detector set. When the data matches any detector in detec-
tor set, anomaly changes occur in the protected data. 

The detector generation algorithm is one of the most important components of 
negative selection algorithm. Fig. 1 shows the typical detector generation algorithm 
when the partial matching rule is Hamming distance, which runs in exponential time 
with respect to the size of the self set [5, 7]. 

(1) l : The string length.  
(2) r : Hamming distance parameter. If the Hamming distance between two 

strings is smaller than rl − , these two strings match. In other words, if two 
strings are identical with no less than r bits in the corresponding positions, 
these two strings match. 

(3) S : The self set. 
(4) R : The detector set. R is set as an empty set initially. 
(5) Generating a string d  randomly as a candidate detector. 
(6) For any self string s in S, if d matches s, go to (5). 
(7) }{dRR ∪← .  

(8) If the size of R  is large enough, this algorithm terminates. Or go to (5). 

Fig. 1. Exhaustive detector generation algorithm 

Note that only a binary space for the self and the nonself space is considered in this 
paper. This algorithm requires generating a number of candidate detectors. And the 
number of candidate detectors is much larger than the expected number of the detectors. 
Let SN  denote the size of the self set, 0RN  represent the number of the candidate 

detectors, and RN  denote the size of the detector set. The time cost of this algorithm 

is proportional to 0RN  and SN , and the space is determined by SN  [7]. 
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Space complexity: )( lNO S ⋅ . 

The failure probability fP  [5] achieved by RN  detectors is 

RN
mf PP )1( −=  . (1) 

Where mP  is the probability of a match between two random strings. 

Since the partial matching rule is Hamming distance, the probability of a match be-
tween two random strings is  
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Normally, mP  is small. Table 1 lists some values of mP  with different l and r .  

Table 1. Some values of mP with different l and r  

l  r  Pm l  r  Pm 
8 6 0.1445 32 20 0.1077 
8 7 0.0351 32 24 0.0035 

16 11 0.1051 32 28 9.6506e-6 
16 12 0.0384 32 30 1.2317e-007 
16 13 0.0106 64 40 0.0300 
16 14 0.0021 64 48 3.8665e-005 
16 15 0.0003 64 56 2.7813e-010 

Notably, these above formula are under an assumption that all detectors are inde-
pendent. In this paper, the other formulas are all based on this assumption. Since the 
candidate detectors are generated randomly, the overlap of the detectors will increase 
as SN  and mP  increase [7]. 

3   Heuristic Detector Generation Algorithm for Negative Selection 
Algorithm with Hamming Distance Partial Matching Rule 

3.1   Some Definitions 

Firstly, some definitions are given.  

Definition 1. Template: A template of order i is a size l string consisting of l-i 
“blank” symbols (represented by “*” here). For example, “11*1*” is a template of 
order 3 with two “blanks” [7]. 

In this paper, a detector is a string that consists of {0, 1, *}, where “*” can match with 
“0” and “1”. Therefore, a template with some “blanks” could be a detector if this 
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template does not match any self individual. Actually, a template is regarded as a 
candidate detector. 

For example, if l=4, r=3 and the self set is {0010, 1001}, template “111*” is a 
valid detector.  

Obviously, this definition of the detector can enlarge the coverage of a detector and 
decrease the number of detectors needed for a given detection rate. 

Definition 2. A candidate detector template of a self string: Given a self string 

lxxxxs 321= , a candidate detector template sT  with order c ( 1+−= rlc ) can be 

constructed as follows. Select c  bits of s  randomly and flip these c  bits, and let 
other 1−r  bits as “blanks”.  

For example, sT  can be one of the following templates: 

***21 cxxx , 

*** 1121 +− cc xxxx , 

**** 1221 +− cc xxxx ,  

……, 

or llr xxx 1*** − . 

Template sT  has r-1 “blanks” and c determinate bits. Each bit of c determinate bits 

is set by flipping the corresponding bit of S . Therefore, the possible number of  sT  is 

−1r

l
. 

Definition 3. A candidate detector template of both a self string and a template: 
Given a self string lyyyys 321=  and a candidate detector template t  with order c, 

one candidate detector template stT ,  with order kc + , is constructed by the following 

method. If clk −≤ , select k-bits of the cl −  “blank” bits randomly and set the val-
ues of the selected bits by flipping the corresponding bits of S , while other kcl −−  
bits remain “blank”. On the other side, if clk −> , such candidate detector template 

stT ,  does not exist. 

For example, if ***21 cxxxt = , then stT ,  with order kc +  can be one of the 

following templates: 

**121 kccc yyxxx ++ ,  

***1121 kckccc yyyxxx +−++ ,  

****1121 kckccc yyyxxx +−++ , 

……, 

or llklc xyyxxx 1121 *** −+− . 
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Obviously, template stT ,  has kcl −−  “blanks” and kc +  determinate bits. The 

values of the new k determinate bits are set by flipping the corresponding bits of 

lyyyys 321= . Therefore, the possible number of stT ,  is 
−
k

cl
.  

3.2   Heuristic Detector Generation Algorithm 

Fig. 2 shows the heuristic detector generation algorithm in detail. The valid detectors 
generated are stored in R . 

(1) Denote all elements in the self set as 
SNsss ,,, 21 . 

(2) Initialize Φ=R . 
(3) Select a self string )1( sr Nrs ≤≤  randomly. Randomly generate a candidate 

detector template with order c ( 1+−= rlc ) of rs , and the candidate detec-

tor template is denoted by d . Therefore, d  has 1−r  “blanks”. Let 
1−= rm . 

(4) Initialize 0=i . 
(5) Set 1+= ii , 

a) If ri = , go to (5). 
b) If SNi > , }{dRR ∪← . If the size of R reaches the expected number of 

the mature detectors or other end conditions are satisfied, the algorithm 
terminates. Otherwise, go to (3). 

c) If SNi ≤ , 

i. Calculate the number of bits that both d  and the self string is  are 

identical in the corresponding positions where the bits of d  are 
determinate, and denoted by k. That is to say, no “blank” bit is 
considered when calculating k. 

ii. If rk ≥ , delete d  and go to (3). 
iii. If 1−= rk , all “blank” bits of d  are replaced by the flipped 

value of the corresponding bits of is , and set 0=m . Go to (5). 

iv. If 1−< rk  and 1−≤+ rmk , the candidate detector template d  
and it’s “blank” m  bits remain unchanged, go to (5). 

v. If 1−< rk  and 1−>+ rmk , randomly generate one candidate 
detector template t  with order )1( krl −−−  of both d and is . 

And set td = , krm −−= 1 , go to (5). 

Fig. 2. The heuristic detector generation algorithm 

The detectors generated by the algorithm in Fig. 2 consist of {0, 1, *}. And the “*” 
can be matched with both “0” and “1”. Assume a detector d has b “blanks”. Any ran-
dom string is matched by this detector with a probability of  
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In Table 2, some values of bmP ,  are given. 

Table 2. Some values of bmP , with different r  and b  

l  r  b  bmP ,  l  r  b  bmP ,  

16 14 0 0.0021 32 28 0 9.6506e-006 
16 14 2 0.0065 32 28 2 2.9738e-005 
16 14 4 0.0193 32 28 4 8.9996e-005 
16 14 6 0.0547 32 28 6 0.0003 
16 14 8 0.1445 32 28 8 0.0008 
16 14 10 0.3438 32 28 10 0.0022 
16 14 12 0.6875 32 28 12 0.0059 

Given a detector set },,{ 21 RNdddR = , and the numbers of their “blank” bits are 

},,,{ 21 RNbbb , the failure probability fP  achieved by these RN  detectors is 

∏
=

−=
R

i

N

i
bmf PP

1
, )1(  . (4) 

As mentioned in section 2, we assume that all detectors are independent here. 

4   Experiments 

For convenience, the traditional negative selection algorithm is denoted by t-NSA, 
and the heuristic algorithm given in section 3 is denoted by h-NSA.  

In this paper, the following experiments are conducted to evaluate the performance 
of the heuristic detector generation algorithm proposed in this paper. Every experi-
ments runs 10 times independently. 

In section 4.1, experiments are conducted to estimate the average matching number 
for generating one detector. In both t-NSA and h-NSA, all candidate detectors are 
generated at random and some of them are removed because of matching one or more 
self strings. In these two algorithms, the basic operator is the matching operator be-
tween the self string and the candidate detector (or the candidate detector template). 
Therefore, the average matching number for generating one detector can reflect their 
time costs experimentally.  

In section 4.2, comparisons on 
RN  for fixed 

fP  are done. At the same time, the 

actual fP  are given. 



 A Heuristic Detector Generation Algorithm for Negative Selection Algorithm 235 

In all experiments, the size of the test set is denoted by TN . Notably, the test set con-

sists of different anomaly strings, and they are generated randomly one by one. That is 
to say, if an anomaly string is identical to any one of the test set, it can not be added into 
the test set. In these two algorithms, the self set and test set are generated randomly by 
randomize(…) and random(…) functions in visual c++. Suppose the length of string is 
l . An anomaly string in the test set is generated according to the following steps. 

(1) The random(…) function is used to generate an integer between 0 and  12 −l  
directly, then transform this integer into a binary string.  

(2) If this binary string matches any self individual or any one in the test set, go to 
(1). Or add this binary string into the test set. 

In addition, when the length of string is l  and the matching length is r , a self 

string with Hamming distance can cover 
r

l
 strings. Therefore, in the following 

experiments, the size of self set is relatively small. Otherwise, the self set is prone to 
covering the whole space, and both the detector set and the test set are difficult to be 
generated. 

In the experiments, MG  represents the matching times between all candidate de-

tectors and the self individuals during the generation of detectors. 
SR

M
G NN

G
C =  repre-

sents the average cost of generating one matured detector. And this parameter can 
reflect the algorithms’ time cost experimentally. Finally, RD  represents the detection 

rate. And fR PD −= 1 . 

4.1   Comparisons on MG  and RD  Between h-NSA and t-NSA 

Experiment 1. The size of self set SN  is fixed and the size of the detector set RN  

varies. Set 14,16 == rl , 300=SN , 10000=TN . And the experimental results are  

 

 

Fig. 3. (a) Comparisons on GC  between h-NSA and t-NSA when fixing SN  and varying 

RN ; (b) Standard deviation of GC  between h-NSA and t-NSA when fixing SN  and varying 

RN  
 

(a) (b)
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Table 3. Comparisons on MG between h-NSA and t-NSA when fixing SN  and varying RN  

RN   Max MG  Min MG  AVG MG  STDDEV 

h-NSA 16120 15167 15675.7 365.22 
50 

t-NSA 28545 22280 24527.7 1792.28 

h-NSA 31513 30152 30879.1 523.31 
100 

t-NSA 54513 46722 49757.6 2552.35 

h-NSA 47259 45413 46127.4 646.26 
150 

t-NSA 85156 72262 77705.6 3711.31 

h-NSA 62433 60703 61734.7 545.77 
200 

t-NSA 109638 94355 101503.9 4410.65 

h-NSA 79305 76100 77314.0 1008.22 
250 

t-NSA 139078 121987 126130.4 5260.17 

h-NSA 94836 91775 92897.3 1205.18 
300 

t-NSA 163775 148562 155445.2 5053.12 

h-NSA 108330 106551 107743.4 600.72 
350 

t-NSA 187053 175327 182479.2 3808.99 

h-NSA 125041 122900 123915.1 656.90 
400 

t-NSA 215162 197034 204130.6 5960.36 

h-NSA 141056 138041 139746.7 1108.97 
450 

t-NSA 242589 222226 232088.5 6304.61 

h-NSA 156130 153357 154610.9 953.22 
500 

t-NSA 260032 246993 252299.7 4340.26 

shown in Table 3 and Table 4. For convenience, the experimental results are also 
shown in Fig. 3 and Fig. 4. 

From Table 3 and Fig. 3, it can be observed that when SN  is fixed, the GC  in both 

h-NSA and t-NSA almost have no notable changes with the increment of RN . How-

ever, when SN  is fixed, it’s much more difficult to generate the same number of 

matured detectors in t-NSA than in h-NSA.  
From Table 4 and Fig. 4, it can be observed that the detection ratio RD  of both h-

NSA and t-NSA increase with the increment of RN . But also obviously, the detection 

ratio RD  of h-NSA is much higher than that of t-NSA for the same number of ma-

tured detectors. 
From Fig. 3 and Fig. 4, It is also known that the standard deviations of both GC  

and RD  in h-NSA are lower than those in t-NSA. So, the h-NSA is more stable than 

t-NSA. 
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Table 4. Comparisons on RD between h-NSA and t-NSA when fixing SN  and varying RN  

RN RD RD RD

h-NSA 0.3884 0.3082 0.34549 0.027677 
50 

t-NSA 0.1027 0.0918 0.09719 0.004307 

h-NSA 0.5645 0.4893 0.53586 0.028648 
100 

t-NSA 0.1886 0.1777 0.18409 0.003038 

h-NSA 0.7112 0.6512 0.67375 0.017377 
150 

t-NSA 0.2621 0.2468 0.25434 0.005868 

h-NSA 0.7621 0.7025 0.74181 0.017484 
200 

t-NSA 0.3206 0.3072 0.31461 0.003802 

h-NSA 0.8348 0.8074 0.82325 0.008856 
250 

t-NSA 0.3754 0.358 0.36893 0.004837 

h-NSA 0.8799 0.8442 0.85341 0.010391 
300 

t-NSA 0.4198 0.4076 0.41702 0.003696 

h-NSA 0.8932 0.8579 0.87326 0.011136 
350 

t-NSA 0.4625 0.4522 0.45768 0.003748 

h-NSA 0.922 0.9008 0.91421 0.007709 
400 

t-NSA 0.503 0.4819 0.49338 0.007111 

h-NSA 0.9422 0.9166 0.9306 0.008074 
450 

t-NSA 0.5326 0.5231 0.52762 0.003233 

h-NSA 0.9532 0.9285 0.94278 0.007652 
500 

t-NSA 0.5642 0.5487 0.55522 0.00499 

 

 

Fig. 4. (a)Comparisons on RD  between h-NSA and t-NSA when fixing SN  and varying RN ; 

(b)Standard deviation of RD  between h-NSA and t-NSA when fixing SN  and varying RN  

Experiment 2. The size of matured detectors RN  is fixed, while the size of the self 

set SN  varies. Set 14,16 == rl , 100=RN , 10000=TN  and the experimental results 

are shown in Table 5 , Table 6, Fig. 5 and Fig. 6. 

(a) (b)
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Table 5. Comparisons on MG between h-NSA and t-NSA when fixing RN  and varying SN  

SN MG
MG

MG

h-NSA 5000 5000 5000.0 0 
50 

t-NSA 5686 5252 5426.8 151.14 

h-NSA 10000 10000 10000.0 0 
100 

t-NSA 12434 11360 11716.2 344.96 

h-NSA 20383 20000 20107.3 148.86 
200 

t-NSA 30275 26272 28499.5 1365.31 

h-NSA 32055 30527 31052.8 448.16 
300 

t-NSA 56718 44809 49433.9 3574.93 

h-NSA 44248 40796 42513.5 979.37 
400 

t-NSA 95220 73279 81900.0 6532.52 

h-NSA 58264 53215 55599.7 1324.18 
500 

t-NSA 145005 120985 129361.7 7175.92 

h-NSA 71615 65516 68209.4 1916.98 
600 

t-NSA 212944 168734 187648.0 13928.35 

h-NSA 88921 78691 82592.2 3309.34 
700 

t-NSA 332533 225637 275329.4 33571.90 

h-NSA 119346 111265 115244.9 3135.51 
900 

t-NSA 688482 471133 562326.6 75176.57 

h-NSA 165563 135428 151418.2 9687.97 
1100 

t-NSA 1199136 969823 1124476.0 69780.24 
 

  

Fig. 5. (a)Comparisons on GC between h-NSA and t-NSA when fixing RN  and varying SN ; 

(b) Standard deviation of GC between h-NSA and t-NSA when fixing RN  and varying SN  

From Table 5 and Fig. 5, when the RN  is fixed, the GC  of both h-NSA and t-NSA 

increase with the increment of SN . However, the average matching numbers for gener-

ating one matured detector in h-NSA is much less than in t-NSA, especially when SN  

is large. And the increasing speed of GC  in t-NSA is much higher than in h-NSA.  

(a) (b)
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Table 6. Comparisons on RD  between h-NSA and t-NSA when fixing RN  and varying SN  

SN RD RD RD

h-NSA 0.9543 0.9303 0.94203 0.008844 
50 

t-NSA 0.1876 0.1814 0.1849 0.002486 

h-NSA 0.8474 0.7381 0.79412 0.028445 
100 

t-NSA 0.1894 0.1751 0.18214 0.004446 

h-NSA 0.6863 0.5956 0.63463 0.032304 
200 

t-NSA 0.1911 0.1751 0.18222 0.005227 

h-NSA 0.5652 0.5154 0.53954 0.019914 
300 

t-NSA 0.1882 0.1763 0.18168 0.003982 

h-NSA 0.5125 0.4433 0.48044 0.025536 
400 

t-NSA 0.1868 0.1709 0.17724 0.005197 

h-NSA 0.4869 0.3991 0.44081 0.027283 
500 

t-NSA 0.1789 0.1674 0.17409 0.003515 

h-NSA 0.4684 0.3966 0.43301 0.025968 
600 

t-NSA 0.1803 0.164 0.17158 0.005298 

h-NSA 0.4454 0.3975 0.41809 0.015273 
700 

t-NSA 0.1782 0.1645 0.17116 0.00441 

h-NSA 0.4425 0.3809 0.40513 0.020728 
900 

t-NSA 0.1772 0.1663 0.17173 0.003877 

h-NSA 0.4121 0.3635 0.38717 0.016699 
1100 

t-NSA 0.1771 0.1567 0.16774 0.00544 
 

 

Fig. 6. (a)Comparisons on RD  between h-NSA and t-NSA when fixing RN  and varying SN ; 

(b) Standard deviation of RD between h-NSA and t-NSA when fixing RN  and varying SN  

From Table 6 and Fig. 6, when the RN  is fixed, the detection ratio RD  of h-NSA 

decrease with the increment of SN . However, the RD  of h-NSA is always higher 

than it of t-NSA. From Table 6, the RD  of t-NSA decreases slowly. It is noted that as 

(a) (b)
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SN  increases, the RD  of t-NSA will also decrease much more and smaller than the 

expected fP  because of the overlap of the detectors [7]. Related experiments will be 

given in subsection 4.2. 
From Fig. 5 and Fig. 6, it is also known that the standard deviation of GC  in h-

NSA is much less than it in t-NSA, while the standard deviation of RD  in h-NSA is 

little higher than it in t-NSA. However, the standard deviation of RD  in h-NSA is 

always little than 0.055, and this is acceptable since its detection rate is much higher 
than that of t-NSA. 

4.2   Comparisons on RN  for Fixed fP   

In this subsection, the experiments are conducted to show the efficiency of h-NSA for 
fixed fP . 

In this experiment, the expected detectors number RN  is calculated by the formula 

of 
m

f
R P

P
N

ln−
=  in t-NSA [5, 7]. In h-NSA, the RN  is gotten after the following 

steps. 

(1) Initialize 0=RN  and 1=fCP . 

(2) According to the h-NSA described in section 3.2, one detector is generated.  

(2.1) Calculate bmP ,  as formula (3) for this detector. 

(2.2) )1(* ,bmff PCPCP −= . 

(2.3) 1+= RR NN . 

(3) If ff PCP > , go to (2). 

(4) End. 

In Table 7, ‘ fP  (actual)’ means the real values of fP  are gained by experimentally 

testing. And the size of the test set, namely TN , are also given in Table 3. TN  is set 

as 10000 except one the case of l=16, r=12 and 60=SN  (because it is difficult, and 

often impossible to generate 10000 anomaly strings). 
From Table 7, it is shown that the needed matured detectors RN  of  h-NSA is 

much less than that of t-NSA  for the same fP . And the real value of fP  of h-NSA is 

much nearer to the expected fP  too. In fact, as SN  and mP increase, the real fP  of t-

NSA is much larger than the expected fP , namely 0.1. 
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Table 7. Comparisons on RN  between h-NSA and t-NSA when 1.0=fP  

 

l r SN TN RN fP
RN fP

Furthermore, as shown in subsection 4.1, the average matching numbers for gener-
ating one matured detector in h-NSA is much less than in t-NSA. Therefore, to gener-
ate detectors enough for the same expected fP , the time cost of h-NSA is much less 

than that of t-NSA. 

5   Discussions 

In this section, the time complexities of these two algorithms are discussed and com-
pared. In both t-NSA and h-NSA, the basic operator is the matching operator between 
the self strings and the candidate detectors. The match times MG  can reflect the time 

cost to some extent. From the experimental results in section 4, it is shown that the 

MG  of h-NSA is much less than it of t-NSA under the same parameters. Therefore, 

the experimental results have demonstrated that the time cost of h-NSA is less than it 
of t-NSA.  

Actually, the time complexity of these two algorithms can be denoted by  

)()( 0 S
S

R
SR N

P

N
ONNO ⋅=⋅ , (5) 

where SP  means the survivable probability of an initial random detector.  

From equation (2) and equation (3), it is true that mbm PP ≥, , and the equal is satis-

fied only when 0=b . According to equation (1), equation (4) and mbm PP ≥, , for the 

same expected fP , the needed detectors number RN  of h-NSA is less than that of  

t-NSA.  
As for h-NSA, there are 1−r  “blank” bits in the initial candidate detectors. And 

the number of “blank” bits tends to decrease in the course of matching other self 
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strings. When the number of “blank” bits is zero, the corresponding candidate detec-
tor in h-NSA has the same probability to survive as that in t-NSA. The survivable 

probability can be represented by 
L
SN

mS PP )1( −= , where L
SN  is the number of the 

left self strings to be matched when the number of “blank” bits is zero. Obvi-

ously, S
L
S NN < , so the survivable probability SP  of a random detector in h-NSA is 

higher than in t-NSA. Especially, as for h-NSA, an initial candidate detector has 1−r  

“blanks”. Therefore, it represents 12 −r  initial random candidate detectors in t-NSA. 

And in h-NSA the survivable probability SP  of an initial random detector is 12 −r  

times higher than it in t-NSA.  
Therefore, according to equation (5), the time cost of h-NSA is less than that of t-

NSA. 
In addition, the space complexity of h-NSA is equal to that of t-NSA, as shown in 

section 2. It is noted that to store “blank” bits, every bit of a detector in h-NSA needs 
two bits. For example, “00” means” “0”, “01” means “1”, and “10” (or “11”) can be 
used to denote “*”. 

6   Conclusions and Future Works 

A heuristic detector generation algorithm for negative selection algorithm with Ham-
ming distance partial matching rule is proposed in this paper. This is a good supple-
ment for negative selection algorithm since previous efficient detector generation 
algorithms are most for the r-continuous-bits partial matching rule. There are also 
some future works to be done, such as a heuristic detector generation algorithm on 
higher alphabets while not a binary space. Another, this heuristic detector generation 
algorithm will also be applied to practical applications. Generally, the practical data 
set has somewhat special distributions, while not the random distribution that is tested 
in this paper. Since the candidate detector in the heuristic detector generation algo-
rithm is generated according to the self individuals, the performance of h-NSA is 
expected to be more competitive in practical applications. 
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Abstract. Artificial Immune Recognition System (AIRS) has showed an 
effective performance on several problems such as machine learning 
benchmark problems and medical classification problems like breast cancer, 
diabets, liver disorders classification. In this study, the resource allocation 
mechanism of AIRS was changed with a new one determined by Fuzzy-Logic. 
This system, named as Fuzzy-AIRS was used as a classifier in the diagnosis of 
atherosclerosis, which are of great importance in medicine. The proposed sys-
tem consists of the following parts: first, we obtained features that are used as 
inputs for Fuzzy-AIRS from Carotid Artery Doppler Signals using Fast Fou-
rier Transform (FFT), then these obtained inputs used as inputs in Fuzzy-
AIRS. While AIRS algorithm obtained 75% maximum classification accuracy 
for 150 resources using 10-fold cross validation, Fuzzy-AIRS obtained 100% 
maximum classification accuracy in the same conditions. These results show 
that Fuzzy-AIRS proved that it could be used as an effective classifier for the 
medical problems. 

Keywords: Artificial Immune Recognition System (AIRS), Fuzzy resource al-
location mechanism, Atherosclerosis disease, Carotid artery, Fast Fourier 
Transformation.  

1   Introduction 

Atherosclerosis is the buildup of fatty deposits called plague on the inside walls of 
arteries. Plaques can grow large enough to significantly reduce the blood's flow 
through an artery. As an artery becomes more and more narrowed, less blood can 
flow through. The artery may also become less elastic (called "hardening of the arter-
ies"). Atherosclerosis is the main cause of a group of cardiovascular diseases [1]. 



 A Novel Approach to Resource Allocation Mechanism in AIRS 245 

Atherosclerosis is usually diagnosed after symptoms or complications have arisen. 
There are a number of tests in diagnosing vascular diseases, including blood tests, 
electrocardiogram, stress testing, angiography, ultrasound, and computed tomogra-
phy. Angiography is used to look inside arteries to see if there is any blockage and 
how much [2, 3]. This is the most accurate way to assess the presence and severity of 
vascular disease. On the other hand this technique involves injecting dye directly into 
the arteries. Therefore this is a much more invasive. 

Having so many factors to analyze to diagnose the Atherosclerosis disease of a pa-
tient makes the physician’s job difficult. A physician usually makes decisions by 
evaluating the current test results of a patient and by referring to the previous deci-
sions she or he made on other patience with the same condition. The former method 
depends strongly on the physician’s knowledge. On the other hand, the latter depends 
on the physician’s experience to compare her patient with her earlier patients. This 
job is not easy considering the number of factors she has to evaluate. In this crucial 
step, she may need an accurate tool that lists her previous decisions on the patient 
having same (or close to same) factors. 

In this study, resource allocation of AIRS was changed with its equivalence formed 
with Fuzzy-Logic to increase its classification performance by means of resource 
number.  The effects of this change were analyzed in the applications using Carotid 
Artery Doppler Signals. Fuzzy-AIRS, which proved it self to be used as an effective 
classifier in medical field by reaching its goal, has also provided a considerable de-
crease in the number of resources. In all applications conducted, Fuzzy-AIRS ob-
tained high classification accuracies for diagnosis of Atherosclerosis disease.  

The remaining of the paper is organized as follows. We present the used procedure 
in the next section. In Section 3, we give the used algorithm called Artificial Immune 
Recognition System and Fuzzy resource allocation mechanism. In Section 4, we give 
the experimental data to show the effectiveness of our method. Finally, we conclude 
this paper in Section 5 with future directions. 

2   The Procedure  

Fig.1 shows the procedure used in the proposed system. It consists of four parts: (a) 
Measurement of Carotid Artery Doppler Signal, (b) Spectral Analysis (AIRS inputs 
were selected), (c) Artificial Immune Recognition System with fuzzy resource alloca-
tion mechanism and (d) Classification results (Atherosclerosis and healthy).  

2.1   Hardware and Demographic Acknowledgments  

Carotid arterial Doppler ultrasound signals were acquired from 60 patients and 54 
healthy volunteers. The patient group included thirty-three males and twenty-seven 
females with an established diagnosis of atherosclerosis through coronary or aorto-
femoropopliteal (lower extremity) angiography (mean age: 45 years; range: 25-69 
years). Healthy volunteers including thirty-five males and nineteen females (mean 
age: 26 years; range: 20-39 years) were young non-smokers who appeared not to bear 
any risk of atherosclerosis. The two study groups represent the upper and lower 
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Fig. 1. The Procedure used in the proposed system. 

extremes of the arterial compliance. We have utilized Toshiba PowerVision 6000 
Doppler Ultrasound Unit in the Radiology Department for data acquisition.  

A linear ultrasound probe of 10 MHz was used to transmit pulsed ultrasound sig-
nals to the proximal left common carotid artery. In all tests performed on the patients 
and healthy subjects, the insonation angle and the presettings of the ultrasound were 
kept constant. 

2.2   Spectral Analysis of Carotid Artery Doppler Signals 

Welch method of power spectrum estimation was applied on the Doppler data. Blood 
flow can only be considered statistically stationary for typically 10 to 20 ms. There-
fore acquired Doppler data was grouped in frames of 512 data points and the method 
was applied on these frames. Welch’s method is one among the classical methods of 
spectrum estimation based on FFT.   

2.2.1   Welch Method of Spectral Analysis 
FFT based Welch method is defined as classical (Nonparametric) method. It is made 
the second modification of periodogram spectral estimator, which is to window data 
segments prior to computing the periodogram [4-9]. If avaliable information on 

the signal consists of the samples{ }N
nnx 1)( = , the periodogram spectral estimator is 

given by; 
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Where X(k) is expressed as the discrete Fourier coefficient, N is the length of avail-
able data and x(n) is the input signal on the time domain. The procedure that com-
putes Eq. (4) is called as FFT algorithm. The Welch PSD can be efficiently computed 
by the FFT algorithm. Variance of an estimator is one of the measures often used to 
characterize its performance. For 50% overlap and triangular window, variance for 
the Welch method is given by; 

))(ˆvar(
8

9
))(ˆvar( fP

S
fP lw =  (5) 

Where )(ˆ fPw the Welch PSD is estimate and )(ˆ fPl  is the periodogram estimate of 

each signal interval [4-10]. 
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A sonogram is plotted with the frequency components and power spectral density 
values sequenced on the timeline. Time is on the x-axis, while frequency is on the 
y-axis and gray value of the display represents the corresponding power spectral 
density.  

3   AIRS Classifier Algorithm 

AIRS is a resource limited supervised learning algorithm inspired from immune 
metaphors. In this algorithm, the used immune mechanisms are resource competition, 
clonal selection, affinity maturation and memory cell formation. The feature vectors 
presented for training and test are named as Antigens while the system units are called 
as B cells. Similar B cells are represented with Artificial Recognition Balls (ARBs) 
and these ARBs compete with each other for a fixed resource number. This provides 
ARBs, which have higher affinities to the training Antigen to improve. The memory 
cells formed after the whole training Antigens were presented are used to classify test 
Antigens. The algorithm is composed of four main stages, which are initialization, 
memory cell identification and ARB generation, competition for resources and 
development of a candidate memory cell, and memory cell introduction. Table 1 
summarizes the mapping between the immune system and AIRS.  

Table 1. Mapping between the Immune System and AIRS 

Immune System AIRS 

Antibody Feature Vector 

Recognition Ball Combination of feature vector and vector class  

Shape-Space Type and possible values of the data vector  

Clonal Expansion  Reproduction of ARBs that are well matched antigens  

Antigens Training data 

Affinity Maturation Random mutation of ARB and removal of the least 

stimulated ARBs 

Immune Memory Memory set of mutated ARBs 

Metadynamics Continual removal and creation of ARBs and memory  

cells 
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We give the details of our algorithm below. 

1. Initialization: Create a set of cells called the memory pool (M) and the ARB 
pool (P) from randomly selected training data. 
2. Antigenic Presentation: for each antigenic pattern do: 

(a) Clonal Expansion: For each element of M, determine its affinity to the 
antigenic pattern, which resides in the same class. Select the highest affin-
ity memory cell (mc) and clone mc in proportion to its antigenic affinity to 
add to the set of ARBs (P). 
(b) Affinity Maturation: Mutate each ARB descendant of the highest affin-
ity mc. Place each mutated ARB into P. 
(c) Metadynamics of ARBs: Process each ARB using the resource alloca-
tion mechanism. This process will result in some ARB death, and ulti-
mately controls the population. Calculate the average stimulation for each 
ARB, and check for termination condition. 
(d) Clonal Expansion and Affinity Maturation: Clone and mutate the ran-
domly selected subset of the ARBs left in P based on their stimulation 
level.  
(e) Cycle: While the average stimulation value of each ARB class group is 
less than a given stimulation threshold go to step 2.c. 
(f) Metadynamics of Memory Cells: Select the highest affinity ARB of the 
same class as the antigen from the last antigenic interaction. If the affinity 
of this ARB with the antigenic pattern is better than that of the previously 
identified best memory cell mc then add the candidate (mc-candidate) to 
memory set M. If the affinity of mc and mc-candidate are below the affin-
ity threshold, remove mc from M. 

3. Classify: Classify data items using the memory set M. Classification is per-
formed in a k-Nearest Neighbor fashion with a vote being made among the k clos-
est memory cells to the given data item being classified. 
        We can characterize AIRS as follows: 

• Memory: The memory of the AIRS algorithm is in the pool of memory cells 
developed through exposure to the training data (experiences);  

• Adaptation: The adaptation occurs primarily in the ARB pool. With each 
new experience, AIRS evolves a candidate memory cell in reaction to this 
experience. If this memory cell is of sufficient quality, then the memory 
structure is adapted to include in it. 

• Decision-making: The initial decision is which memory cell is the most 
similar to the incoming training antigen. This cell is used as a progenitor for 
a pool of evolving cells. During classification, the primary classification de-
cision is made based on the k most similar memory cells to the data item be-
ing classified. 

These steps are repeated for each training antigen. After training, test data are 
presented only to memory cells. k-NN algorithm is used to determine the classes in 
test phase. For more detailed information about AIRS, the reader is referred to 
[11, 12]. 
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3.1   Fuzzy resource allocation mechanism  

The competition of resources in AIRS allows high-affinity ARBs to improve. Accord-
ing to this resource allocation mechanism, half of resources are allocated to the ARBs 
in the class of Antigen while the remaining half is distributed to the other classes. The 
distribution of resources is done according to a number that is found by multiplying 
stimulation rate with clonal rate. In the study of Baurav Marwah and Lois Boggess, a 
different resource allocation mechanism was tried [13]. In their mechanism, the Ag 
classes occurring more frequently get more resources. Both in classical AIRS and the 
study of Marwah and Boggess, resource allocation is done linearly with affinities. 
This linearity requires excess resource usage in the system, which results long classi-
fication time and high number of memory cells.  

In this study, to get rid of this problem, resource allocation mechanism was done 
with fuzzy-logic. So there existed a non-linearity because of fuzzy-rules. The differ-
ence in resource number between high-affinity ARBs and low-affinity ARBs is bigger 
in this method than in classical approach. 

The input variable of Fuzzy resource allocation mechanism is stimulation level of 
ARB hence the output variable is the number of resources, which will be allocated to 
that ARB. As for the other fuzzy-systems, input membership functions as well as 
output membership functions were formed. The input membership functions are 
shown in Fig. 2.a. 

 

Fig. 2.  a) Input membership function, b) Output membership function 

The input variable, ARB.stim, varies between 0 and 1.  A membership value is cal-
culated according to this value using input membership functions.  In this calculation, 
two points are get which are the cutting points of membership triangles by the input 
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value, ARB.stim. Also these points are named as membership values of input variable 
for related membership function. The minimum of these points is taken as the mem-
bership value of input variable x, ARB.stim (Eq. (6)).  

x  x (x)), (x),MIN((x) BABA ∈=∩ μμμ  (6) 

Here in Eq. (6), μA(x) is the membership value of x in A and μB(x) is the membership 
value of x in B, where A and B are the fuzzy sets in universe X. The calculated input 
membership value is used to get the output value through output membership func-
tions, which are shown in Fig. 2.b  

In the x-axis of Fig. 2.b, allocated resource number that will be calculated using the 
membership functions for the ARB is shown which changes between 0-10. The 
weight in the y-axis, which is the input membership value get as explained above, 
intersects the membership triangles at several points. The rule base for Fuzzy Re-
source Allocation is seen in Fig. 3.  

 

Fig. 3.  Rule base for fuzzy resource allocation 

Here VS, S, MS…etc are the labels of input membership triangles and VS’,S’, 
MS’…etc are the labels of output membership values. The rules in Fig. 3 define 
which points will be taken to average. For example if the input value cuts the triangles 
VS and S among the input membership functions, then the points to be averaged will 
be only the ones of VS’ and S’ triangles in the output membership functions.  

Whereas determining membership value and getting output value using fuzzy-rules 
are of crucial importance, another important point is determination of linguistic values 
used in the input and output membership functions, which are shown in Table 2. 
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Table 2. Linguistic values for input and output membership functions 

Input Output 
VS- Very Small VS’- Very Small 
S- Small S’- Small 
MS- Middle Small MS’- Middle Small 
LS- Little Small LS’- Little Small 
LB- Little Big LB’- Little Big 
MB- Middle Big MB’- Middle Big 
B- Big B’- Big 
VB- Very Big  

These linguistic values were determined in such a manner that the allocated 
resource number for ARBs which have stimulation values between 0 and 0.50 will 
be less while for ARBs which have stimulation values between 0.50 and 1 will be 
more.  

4   The Experimental Results   

In this section, we present the performance evaluation methods used to evaluate the 
proposed method. Finally, we give the experimental results and discuss our observa-
tions from the obtained results. 

4.1   Performance Evaluation 

4.1.1   Classification Accuracy 
In this study, the classification accuracies for the datasets are measured using Eq.(7) 
[11]: 

=
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∈= =
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where T is the set of data items to be classified (the test set), t T, t.c is the class of 
item t, and classify(t) returns the classification of t by AIRS [11]. 

4.1.2   Sensitivity and Specificity Analysis  
For sensitivity and specificity analysis, we use the following expressions. 
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where TP, TN, FP and FN denote true positives, true negatives, false positives, and 
false negatives, respectively. 

True positive (TP): An input is detected as a patient with atherosclerosis diagnosed by 
the expert clinicians. 
True negative (TN): An input is detected as normal that is labeled as a healthy person 
by the expert clinicians. 
False positive (FP): An input is detected as a patient that is labeled as a healthy by the 
expert clinicians. 
False Negative (FN): An input is detected as normal with atherosclerosis diagnosed 
by the expert clinicians. 

4.1.3   k-Fold Cross-Validation 
K-fold cross validation is one way to improve the holdout method. The data set is 
divided into k subsets, and the holdout method is repeated k times. Each time, one of 
the k subsets is used as the test set and the other k-1 subsets are put together to form a 
training set. Then the average error across all k trials is computed. The advantage of 
this method is that it is not important how the data is divided. Every data point ap-
pears in a test set exactly once, and appears in a training set k-1 times. The variance of 
the resulting estimate is reduced as k is increased. The disadvantage of this method is 
that the training algorithm must be rerun from scratch k times, which means it takes k 
times as much computation to make an evaluation. A variant of this method is to 
randomly divide the data into a test and training set k different times. The advantage 
of this method is that we can independently choose the size of the each test and the 
number of trials [14]. 

4.2   Results and Discussion 

Fuzzy-resource allocation mechanism provided Fuzzy-AIRS to classify Atherosclero-
sis disease with 100% classification accuracy using 10-fold cross validation.  

The relation between resource number and classification accuracy in Fuzzy-AIRS 
and AIRS for the diagnosis of Atherosclerosis disease is shown in Table 3 and 4. Also 
they present the obtained classification accuracy and sensitivity and specifity values 
of AIRS and Fuzzy-AIRS classifier algorithms. As can be seen in Table 3 and Table 4, 
AIRS with fuzzy resource allocation mechanism is very effective classifier more than 
original AIRS. This improvement in performance is also very important especially in 
medical field and in applications that use large datasets. 
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Table 3. The obtained classification accuracies, sensitivity and specifity values for AIRS 
classifier algorithm using 10-fold cross validation 

Number of Resources Classification Accuracy 
(%) 

Sensitivity Specificity 

50 75 100 66.67 
100 58.33 100 54.54 
150 50 0 50 
200 75 100 66.67 
250 58.33 100 54.54 
300 58.33 66.67 55.55 
350 58.33 100 54.54 
400 66.67 100 60 
450 75 100 66.67 
500 66.67 100 66.67 

Table 4. The obtained classification accuracies, sensitivity and specifity values for Fuzzy-AIRS 
classifier algorithm using 10-fold cross validation 

Number of Resources Classification Accuracy 
(%) 

Sensitivity Specificity 

50 75 100 66.67 
100 91.66 85.71 100 
150 100 100 100 
200 100 100 100 
250 91.66 100 85.71 
300 100 100 100 
350 100 100 100 
400 100 100 100 
450 100 100 100 
500 100 100 100 

5   Conclusions and Future Work 

With the improvements in expert systems and ML tools, the effects of these innova-
tions are entering to more application domains day-by-day and medical field is one of 
them. Decision-making in medical field can sometimes be a trouble. Classification 
systems that are used in medical decision-making provide medical data to be exam-
ined in shorter time and more detailed. 

In this study, the resource allocation mechanism of AIRS that is among the most 
important classification systems of Artificial Immune Systems was changed with a 
new one that was formed using fuzzy-logic rules.   

In the application phase of this study, Carotid Artery Doppler Signals were used. In 
the classifications of Atherosclerosis disease, the analyses were conducted to see the 
effects of the new resource allocation mechanism.  

According to the application results, Fuzzy-AIRS showed a considerably high per-
formance with regard to the classification accuracy especially for diagnosis of 
Atherosclerosis disease. The reached classification accuracy of Fuzzy-AIRS for 
Atherosclerosis disease is 100%.  
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AIRS is going one step ahead among the other classifiers with the aid of improve-
ments done in the algorithm. The proposed change in this study has produced very 
satisfactory results to use the classifier in other medical datasets. Other application 
areas are also open for Fuzzy-AIRS to experiment with. One of the further studies can 
be using the fuzzy mechanisms in other Artificial Immune Systems similar to AIRS.    
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Abstract. The work explores the potentiality of a clonal selection algorithm in 
pattern recognition (PR). In particular, a retraining scheme for the clonal selec-
tion algorithm is formulated for better recognition of handwritten numerals (a 
10-class classification problem). Empirical study with two datasets (each of 
which contains about 12,000 handwritten samples for 10 numerals) shows that 
the proposed approach exhibits very good generalization ability. Experimental 
results reported the average recognition accuracy of about 96%. The effect of 
control parameters on the performance of the algorithm is analyzed and the 
scope for further improvement in recognition accuracy is discussed. 

Keywords: Clonal selection algorithm, character recognition, Indic scripts, 
handwritten digits. 

1   Introduction 

Several immunological metaphors are now being used (in a piecemeal) for designing 
Artificial Immune Systems (AIS) [1]. These approaches can broadly classified into 
three groups namely, immune network models [2], negative selection algorithms [3], 
and clonal selection algorithms [4]. This paper investigates a new training approach 
for clonal selection algorithm (CSA) and its application to character recognition. 
Earlier CSA was used for a 2-class problem to discriminate pair of similar character 
patterns [5], the present study extends it for a m-class classification problem. 

Training in CSA so far is modeled as one pass method where each antigen under-
goes single training phase. Once the training on all antigens is over, an immune mem-
ory is produced and used for solving classification problem (as used in [5] and [6]). 
Our work presents a new training algorithm where a refinement phase is used to fine-
tune the initial immune memory that is build from the single pass training. In the 
refinement stage, training of an antigen depends on its recognition score. Incorrect 
recognition of an antigen triggers further training. This process continues until the 
immune system suffers from negative learning or it is over-learned.        

Recognition of handwritten Indic numerals has been considered to study the perform-
ance of the modified CSA. Because of its numerous applications for postal automation, 
bank check reading, etc., the document image analysis researchers have been studying 
the problem for last several years and a number of methods have been proposed. 
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While some of these are biologically inspired approaches such as neural networks [7], 
genetic algorithms [8], AIS approaches remained unexplored for this application; though 
AIS techniques have been applied to several pattern recognition problems [9-14]. 

The rest of the paper is organized as follows. Section-2 describes the CSA with the 
proposed retraining scheme. Section-3 provides the experimental details and report re-
sults highlighting the performance of the CSA in classifying handwritten numerals. This 
section also exhibits the performance of the new retraining scheme over the previously 
used single-pass approach. In addition, section-3 discusses the effect of CSA control 
parameters on its performance, and section-4 provides some concluding remarks. 

2   Classification Using Clonal Selection Algorithm 

Let AG represent a set of training data (antigens) and agi represents an individual 
member of this set: AG = {ag1, ag2, …, agk}. Each agi has two attributes: class: ag.c 
∈C ={c1,c2,………cn} (n = 10 for digit classification) and feature vector: ag.f. Let the 
immune memory, IM={m1, m2, …, mm} where mi is a memory cell having two attrib-
utes similar to those of an individual antigen. For any mi, mi.c∈C = {c1, c2,………cn} 
is the class information and mi.f is the feature vector. 

Binary images of handwritten numerals are first size-normalized in a 48x48 matrix 
whose each element is binary. This matrix is used as a feature map for the experi-
ments. Similarity between two such feature matrices S(F1, F2) a measure of auto-
correlation coefficient between F1 and F2 as defined below: 
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where s00, s11, s01, and s10 denote the number of zero matches, one matches, zero mis-
matches, and one mismatches, respectively. It is to be noted that S gives values in the 
range [0, 1], where 1 indicates the highest and 0 signifies the lowest similarity be-
tween two samples. We used this metric to measure similarity/affinity during anti-
body-antibody or antigen-antibody interactions. 

Training has two phases: Phase-I is the same as was used in [6], while Phase-II in-
corporates a refinement process. Phase-I involves three stages namely, initialization 
of immune memory, clone generation, and selection of clones to update the immune 
memory. These stages are briefly discussed below. 

Initialization: This stage deals with choosing some antigens as initial memory cells to 
initialize the immune memory. In the present study, only one antigen from each class is 
randomly chosen to initialize the immune memory (IM). It is to be noted that the num-
ber of initial cells has certain effect on system’s performance as illustrated in [6]. 

Clone generation: For a given antigen agi, its closest match (say, mi) is, at first, cho-
sen from the existing IM as follows:  

stim(agi, mi) ≥ stim(agi, mj), for all j ≠ i and mj.c=agi.c (2) 

The function stim() is used to measure the response of a b-cell to an antigen or to 
another b-cell and is directly proportional to the similarity between the feature 
matrices as defined in equation (1). After a memory cell mi (renamed as mmatch) is 
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selected for a training antigen agi, mmatch goes through a proliferation process (Prolif-
eration-I), known as somatic hyper-mutation that generates a number of clones of 
mmatch. The exact number of clones is determined by three parameters, namely, (i) 
hyper-mutation rate, (ii) clonal rate and (iii) stim(agi, mmatch). Note that the first two 
parameters are user-defined.  

Each clone is produced through mutation (controlled by MUTATION_RATE, a 
user defined parameter) at selected sites of mmatch’s feature matrix. No clone is an 
exact copy of mmatch. The algorithms for Proliferation-I and the generation of mutated 
clones are outlined in Algorithm-I and II, respectively. These algorithms are similar to 
the ones described in [6]. On completion of hyper-mutations, a stimulation value is 
computed for each element bj ∈ B as stim(bj, agi). Here bj denotes an individual b-cell 
clone and B represents the entire cloned population.  

In order to minimize the computational cost in generating clones, a modified 
version of the resource limitation policy [15] is incorporated. The modified version 
considers only the recent clones generated for the current antigen undergoing the 
(maturation) training process. The method does not consider clones generated for 
previous antigens i.e. present implementation considered the entire resource for the 
current antigen’s class only.  

Stopping criterion defined in equation (3) is used to terminate the training on an 
antigen agi. If this criterion is not met then further proliferation of existing (i.e. sur-
vived after resource limitation) b-cells is invoked. In this stage (i.e. Proliferation-II), 
each survived b-cell, i.e. bj is proliferated to produce a number of clones determined 
by the resources allocated to it. Proliferation-II process is similar to one for prolifera-
tion-I outlined in Algorithm-I except the calculation of the number clones to be gen-
erated from each surviving b-cell (bj). This number is determined only by the 
CLONAL_RATE and stim(agi, bj). 

B

stimb
B

j
j

=1

.

> STIMULATION_THRESHOLD 
(3) 

Algorithm I. Hyper-mutation/Proliferation-I 

Let B is the set of b-cell clones to be created due to somatic hyper-mutation started 
with mmatch.  

Initially B={mmatch}. 

Let Nc denote the number of clones and calculated as,  

Nc  HYPER_MUTATION_RATE * CLONAL_RATE * stim(agi, mi) 

While (|B| ≤ Nc) 
Do 
       mut  false   //mut is a Boolean variable 
       Call mutate(mi, mut)  
       Let bj denote a mutated clone of mi    
       If (mut) Then B B ∪ bj 
Done 
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Algorithm II. Production of Mutated Clones 

mutate(x, flag){ 
For each binary feature element (i, j) in x.f  // note that x.f is basically a matrix 
Do 
    Generate a random number, r in [0, 1]    
    If (r < MUTATION_RATE) Then 

x.fi,j  toggle(x.fi,j) 
flag  true 

    Endif 
Done 

} 

Clone selection and update of immune memory: Once the training criterion in 
equation (3) is met for an antigen, the most stimulated (w.r.t. the current antigen un-
dergoing training) b-cell among the survived ones is selected as a candidate (let bcandi-

date denote this cell) to be inserted into immune memory. This process is outlined in 
Algorithm III that is similar to one in [6]. This algorithm makes use of two parameters 
AS (average stimulation) and α (a scalar value). The parameter α is a user-defined 
one, whereas AS is measured from the input training antigen set as the average stimu-
lation between all pairs of the mean values of the antigen classes.  

Algorithm III: Update of immune memory 

CandStim  stim(agi, bcandidate) 
MatchStim  stim (agi, mmatch) 
CellAff   stim(mmatch, bcandidate) 
If (CandStim > MatchStim) 

IM  IM ∪ bcandidate   // insertion into the immune memory 
If (CellAff  > α × AS)  

 IM  IM –  mmatch    // memory replacement  

Phase-II of the training algorithm: Note that the training in Phase-I is a one-pass 
method i.e. the system is trained only once on a training antigen. At the end of the 
training phase, the immune memory i.e. IM0={m1, m2, …, mm} is produced. In the 
present implementation, training involves a second phase namely Phase-II that 
employs a refinement process. In this method recognition and training go hand in 
hand to obtain a better immune memory from its initial version i.e.  IM0. 

In this phase, recognition of the all the training antigens is done first using the 
immune memory (IMi, i=0, 1, …) obtained in the previous stage (say, i-th stage). 
Classification strategy outlined next is used for recognition of antigens and the 
recognition accuracy is noted. Next, antigens for which incorrect classification is 
recorded act as a bootstrap samples that undergo further training involving clone 
generation, selection and updating immune memory as outlined above in Phase-I of 
the training. This results in an updated immune memory (IMi+1), which is then used 
for classification of all the training antigens. This newer version is retained if better 
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(than what was obtained using IMi) recognition accuracy is obtained. Otherwise, IMi 

is reloaded and the Phase-II terminates.  
It is observed that for a few iterations of Phase-II newer versions of the immune 

memory continue to produce better recognition accuracy and then there is degradation in 
accuracy, signaling a negative (or over) learning in the system. In fact, instead of using 
the training antigen set, a separate validation set can be used in this refinement phase. 
This modification would be considered in the future extension of the present study. 

Classification strategy: Classification is implemented by a k-nearest neighbor (k-
NN) approach. For a target antigen (ag), k (an odd number) closest (w.r.t. ag) memory 
cells are selected from the immune memory IM. Closeness is measured by the stim 
function i.e. stim(ag, mi) for all i, mi ∈ IM. Next, k mi’s are grouped based on their 
class labels. Class of the largest sized (a majority-voting strategy) group identifies ag. 

3   Experimental Details 

Two different datasets (DS1 and DS2) [16] have been used to test the proposed 
classification approach based on clonal selection algorithm (CSA). These datasets 
DS1 and DS2 contain samples for handwritten numerals in two major Indic scripts 
namely, Devanagari (Hindi) and Bengali, respectively. Unlike English, Chinese, 
Japanese, etc., studies in Indic script handwriting recognition are rare and this 
provides additional motivation to this present work to deal with datasets of handwrit-
ing in Indian languages. Moreover, datasets consisting of a large number of samples 
for handwritten digits in Indic scripts are recently available [16] in public domain and 
this facilitates training and testing of an approach and comparing it with other 
competing methods. 

Both the datasets contain real samples collected from different kinds of handwrit-
ten documents such as postal mails, job application forms and railway ticket reserva-
tion forms, passport application forms, etc. For our experiment, each dataset consists 
of 12,000 samples (equal number of samples for each class). DS1 samples are ran-
domly selected from a collection of 22,556 Devanagari numerals written by 1049 
persons and DS2 samples are taken from a set of 12,938 Bengali numerals written by 
556 persons. Some samples for each digit class are shown in fig 1. The datasets are 
divided are into six equal sized partitions. Training is conducted on samples from five 
partitions and classification is tested on the sixth partition. This realizes a six-fold 
experiment that results in six test runs. The results reported next are averaged over 
these six runs. 

Experiments are carried out under two different training policies, L1: training is 
single pass and L2: proposed method that employs refinement process. Recognition 
accuracies under these two environments are reported in Table 1 and it is observed 
that L2 outperforms L1 by a significant margin. However, L2 generates a slightly 
larger sized immune memory than the one produced by L1. Significant difference is 
observed in the time units required for training. On a Pentium-IV (733 MHz, 128 
RAM) PC, L1 takes quite less CPU time than L2 that involves additional refinement 
phase. However, there is hardly any difference in the time needed for classification by 
the two approaches. The system can classify about 50 characters per second. Abso lute 
time units taken during training and testing are outlined in Table 2 below. 
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Fig. 1.  Hundred random samples from the dataset of Bengali handwritten numerals 

Performance of the proposed refinement stage is studied to check how rapidly the 
system attains the maximum classification rate on the training set. In fact, it’s the first 
local maximum where the training terminates and at present, the system does not 
attempt to find the global one. The response of the additional training module is 
shown in fig. 2 for the dataset DS1. A similar behaviour is obtained for the other 
dataset too.  

In fig. 2 it is to be noted that the recognition accuracy gradually increases till the 
8th iteration after which the accuracy degrades and training terminates. Number of 
antigens undergo training in each pass is also plotted by a line curve in fig. 2. Please 
note that iteration 0 represents the initial Phase-I training where all 10,000 antigens 
were trained.    

Table 1. Recognition accuracies and size of immune memory with two different training 
algorithms   

 Recognition accuracy Size of immune memory 
Dataset L1 L2 L1 L2 

DS1 93.31% 96.23% 912 1283 
DS2 92.57% 95.68% 1103 1472 

Table 2. CPU Time for training and classification using two different training algorithms   

 Time to train Classification speed 
(#characters per second) 

Dataset L1 L2 L1 L2 
DS1 5 H 14 Min 7 H 05 Min 52 49 
DS2 5 H 19 Min 7 H 22 Min 51 47 
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Fig. 2. Performance analysis of the bootstrap module 

Next, the effects of parameters are studied for two different measures: (i) 
recognition accuracy and (ii) size of the immune memory. Results are reported here 
for the new training algorithm. Almost similar effects have been observed on both the 
datasets and results on DS1 are shown in Fig 3. Finally, the effect of k in k-nearest 
neighbour classification is examined and it is observed that k = 5 gives the best 
performance. Recognition accuracies for different values of k are shown in Fig. 4. 
The overall results reported in Table 1 are obtained with k = 5, stimulation threshold 
= 0.89, number of resources = 400, mutation rate = 0.008, affinity threshold scalar, α 
= 0.4, hyper-mutation rate = 2 and clonal rate = 10 (the last two parameters are used 
in Algorithm-I of section 2). 

Classification results are further grouped into three classes, correct: a sample is 
properly classified; incorrect: a sample is wrongly classified, and reject: the system 
cannot classify a sample. A rejection is reported when no single class gets majority 
among the k choices returned by the classifier. Table 3 presents the average classifica-
tion results taking these three aspects into consideration. 
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Table 3. Classification results 

Dataset % correct % incorrect % reject 

DS1 96.23 2.14 1.63 

DS2 95.68 2.44 1.88 

 

Fig. 3. Effect of different parameters on recognition accuracy and size of immune memory: (a) 
stimulation threshold (refer equation (3)), (b) number of resources used for resource limitation, 
(c) Mutation rate (refer Algorithm-II), and (d) Affinity threshold scalar, α as used in Algo-
rithm-III 

Fig. 5 presents the class-wise classification rates. Recognition of the digit ‘0’ attains 

highest recognition score in both scripts. On the other hand, samples of  (digit ‘2’) 
in Hindi and  (digit ‘9’) in Bengali result in the lowest classification rates as 
89.32% and 90.52%, respectively. Study of the confusion matrix identifies several 

similar-shaped character pairs. For example, many samples from  (digit ‘1’) and  

(digit ‘2’) in Hindi dataset and from  (digit ‘1’) and  (digit ‘9’) in Bengali dataset 
resulted in confusion during classification. Some post-processing can be employed to 
discriminate such confusion pairs. In this context, a previous study [5] reported prom-
ising ability of an AIS-based approach for discrimination of similar-shaped character 
pairs. The same approach can also be employed here to further improve the classifica-
tion accuracy. Such multi-level recognition scheme is considered as a future extension 
of the present study. 
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Comparison with other existing studies: As mentioned earlier that there are many 
studies on recognition of handwritten digits in English and Oriental scripts. However, 
there are only a few reports on Indic script. A recent study [17] makes use of fuzzy 
model based recognition scheme and reports recognition accuracy of about 95% on a 
dataset containing about 3500 handwritten samples for Devanagari digits. Study in 
[18] used neural net as classifier and achieved an accuracy of 93.26% on the same 
dataset used here for recognition of handwritten Bengali digits. 

 

Fig. 4. Recognition accuracies using k nearest neighbor approach with different k values 

 

Fig. 5.  Class-wise recognition accuracies 
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Compared to these approaches and achievements, the proposed AIS-based method 
can be viewed as a potential alternative. However, it is to be noted that no study em-
ploys the same feature set. Authors in [17] use some grid-based features, [18] consid-
ers wavelet coefficients as features whereas, a size normalized binary image array has 
been used as feature in the present study. Use of distance measure also differs from 
one study to another. Therefore, a direct comparison needs replication of these ex-
periments using a uniform feature set and the same distance measure. Our future 
study will consider this aspect to bring out a judicious comparison between an AIS-
based framework and other approaches using different learning paradigm.     

4   Conclusions 

This paper presents an application of a clonal selection algorithm for recognition of 
handwritten Indic numerals. In particular, a 2-phase clonal selection algorithm im-
plementing a retraining scheme is proposed, and experiments using different datasets 
are performed. Reported results show that this new method outperforms the previ-
ously used single pass method. Overall classification performance shows that this 
method compares well with the existing approach. In particular, the proposed scheme 
achieves recognition accuracy of about 96% that is comparable to the previous ap-
proaches. 

This study uses a feature vector and a simple distance measure to explore the feasi-
bility of an AIS-based approach as an alternative classification tool. Since encourag-
ing results have been obtained in this experiment, future extension of this study would 
include examination of different feature sets and distance measures to further improve 
the recognition accuracy.  
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Abstract. The B-cell algorithm (BCA) due to Kelsey and Timmis is a
function optimization algorithm inspired by the process of somatic muta-
tion of B cell clones in the natural immune system. So far, the BCA has
been shown to be perform well in comparison with genetic algorithms
when applied to various benchmark optimisation problems (finding the
optima of smooth real functions). More recently, the convergence of the
BCA has been shown by Clark, Hone and Timmis, using the theory
of Markov chains. However, at present the theory does not predict the
average number of iterations that are needed for the algorithm to con-
verge. In this paper we present some empirical convergence results for
the BCA, using a very different non-smooth set of benchmark problems.
We propose that certain Diophantine equations, which can be reformu-
lated as an optimization problem in integer programming, constitute a
much harder set of benchmarks for evolutionary algorithms. In the light
of our empirical results, we also suggest some modifications that can be
made to the BCA in order to improve its performance.

1 Introduction

Artificial immune systems (AIS) constitute a fairly new approach to biologically
inspired computing, that seek to exploit the mechanisms inherent in the natural
immune system for computational purposes. So far, the application of the AIS
approach to problems such as fault detection and network security has been
quite successful (see [de Castro and Timmis 2002b] for a variety of applications).
However, it is still not clear for which classes of problems it is appropriate to
use AIS techniques. Moreover, even in situations where AIS methods are known
to be successful, there is a dearth of theory to explain why they work.

Some of the first steps in the precise theoretical analysis of AIS were taken by
Villalobos-Arias et al. [Villalobos et al. 2004], who have shown the convergence
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of a multiobjective optimization algorithm, and subsequent work of Clark et al.
[Clark et al. 2005] proved analogous results for the B-cell algorithm of Kelsey
and Timmis [Kelsey and Timmis 2003]. In each of these works, the respective
algorithms were described exactly in terms of Markov chains, and the theory of
the latter implied convergence to the optima with probability one, in the limit
when the number of iterations goes to infinity. There is a large amount of liter-
ature concerning the use of genetic algoritms (GAs) as function optimizers (see
e.g. [Dasgupta and McGregor 1992, De Jong 1992]), and in this setting there is
already a precedent for applying Markov chain methods [Vose 1995].

Although the convergence of optimization algorithms like the BCA is a nice
theoretical property, it is not immediately useful from a practical point of view:
one cannot wait for infinitely many iterations! The Markov chain theory applied
to the BCA (see [Clark et al. 2005]) describes the algorithm in terms of a matrix
of probabilities, known as the transition matrix. The transition matrix has 1
as its eigenvalue of largest modulus. In order to get a precise estimate of the
average rate of convergence of the algorithm, in terms of the so called mixing
time [Dyer et al. 2006, Hunter 2003], one would need to estimate the eigenvalue
of the transition matrix which is second largest in size. For some problems, such
as certain sampling algorithms considered by Jerrum [Jerrum 2005], the mixing
time can be estimated, but for the BCA the transition matrix (and hence its
second largest eigenvalue) is highly problem-dependent, and so it is not clear
that a good universal estimate can be obtained.

The aim of this paper is to get some empirical results on the performance of
the BCA applied to some specific problems, in order to see (on average) what
proportion of trials converge to a solution to these problems. In the original
paper by Kelsey and Timmis [Kelsey and Timmis 2003], the BCA was shown to
perform very well compared with GAs and hybrid GAs when these algorithms
were applied to a standard set of benchmark function optimization problems,
including the problem of finding a global minimum of the “Camelback” function

f(x, y) = (4 − 21x2/10 + x4/3)x2 + xy + (−4 + 4y2)y2. (1)

Kelsey and Timmis found that the BCA outperformed a certain hybrid GA in
the sense that it performed fewer function evaluations to get the same optimum
solutions. All the standard problems considered in [Kelsey and Timmis 2003]
were smooth, real-valued functions of this type (in one or several variables). For
smooth function landscapes like these, various hill-climbing algorithms (even
deterministic ones) and GAs are known to be quite successful at obtaining solu-
tions. An important difference between the BCA and GAs is that the BCA does
not use crossover. Here we propose a more challenging set of benchmark prob-
lems, namely the solution of Diophantine equations, which are likely to provide
a fertile testing ground for new algorithms.

In the next section we briefly describe the B-cell algorithm (BCA), before
explaining how to use it to solve Diophantine problems in the following section.
After presenting our experimental results, we conclude with various suggestions
for ways to modify and improve the BCA.
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2 The B-Cell Algorithm

An important aspect of the adaptive immune response is the huge diversity
in lymphocyte populations, which allows essentially any possible antigen to be
recognized. For B cells, this diversity is generated in two quite different ways.
(See section D of [Lydyard et al. 2004] for an overview.) Firstly, at the germline
level (in the absence of antigen), diversity arises due to random selection and
recombination of the genes that code for immunoglobulins. Secondly, further
diversity is generated by somatic mutation, when (in the presence of antigen) B
cells undergo costimulation with T-helper cells and a population of B cell clones
is produced. The somatic mutation means that the clones potentially have a
higher affinity for the antigen than their parent cells.

The B-cell algorithm (BCA) is loosely based on this process of somatic mu-
tation in B cell clones. There is some evidence in the immunological literature
[Lamlum 1999] that mutation occurs in clusters of regions within cells. The novel
feature of the BCA is the use of an analogous notion applied to bit strings: muta-
tion is applied to contiguous regions along the string. This mutation mechanism
is referred to as the contiguous somatic hypermutation operator (described in
more detail below).

The BCA takes bit strings (vectors) of length L, which represent a point in
the search space; this could correspond to bit-encoded double-precision num-
bers, integers, or any other way of encoding the coordinates in search space.
These vectors are considered to be the B cells within the system (although the
analogy with biology is very loose: the B cells are identified with their genetic
code, and with the associated immunoglobulins). Each B cells is associated with
a vector v ∈ P , where P is the population, and the objective function g can
be evaluated at v to give g(v), which corresponds to the fitness of the cell. An
efficient population size for many functions can be small in contrast with ge-
netic algorithms; a population size of five would be typical. In fact, as noted
in [Clark et al. 2005], in the original specification of the algorithm the separate
members of the population evolve independently, so there is no difference be-
tween running the algorithm N times with a population of size one, or once
(i.e. in parallel) with population size N . Unlike standard GAs, the BCA does
not use crossover. However, in practice Kelsey has used a heuristic for culling
the weakest member of the population in each generation [Kelsey 2006], which
effectively introduces an interaction between the different members. (Whether
this is the right heuristic to use will be discussed later.)

Within every iteration (or generation) of the algorithm, each B-cell v is cloned
to produce a clonal pool, C(v). For each B cell within the population, all the
adaptation takes place within C(v). The size of C is typically the same size as
the population P (but this does not have to be the case). Each B-cell v′ ∈ C(v)
is subjected to the contiguous somatic hypermutation operator. The BCA is
outlined in figure 1.

An unusual feature of the BCA is the form of the mutation operator. This
operates by subjecting contiguous regions of the vector to mutation. In essence
a more focused search is undertaken: in [Clark et al. 2005] this is understood
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1. Initialisation: create an initial random population of
individuals P ;

2. Main loop: ∀v ∈ P :
(a) Affinity Evaluation: evaluate g(v);
(b) Clonal Selection and Expansion:

i. Clone each B-cell: for each v ∈ P , produce a pool of clones C(v);
ii. Contiguous mutation: For each v ∈ P , apply the contiguous somatic hy-

permutation operator to every c ∈ C;
iii. Affinity Evaluation: evaluate each clone by applying

g; if a clone is fitter than its parent B-cell v, then replace v by c;
3. Cycle: repeat from step 2 until some stopping criterion

is met.

Fig. 1. Outline of the B-Cell Algorithm

in terms of the bias inherent in the mutation operator, which overall tends to
mutate the least significant bits with higher probability than the most significant
ones. Rather than selecting multiple random sites for mutation, a random site
(or hotspot) is chosen within the vector, along with a random length; the vector
is then subjected to mutation from the hotspot until the length of the contiguous
region has been reached.

3 Diophantine Equations as Optimization Problems

A Diophantine equation is an algebraic equation

f(x, y, z, . . .) = 0

which must be solved over the integers Z. Diophantine problems have a long and
distinguished pedigree in number theory [Mordell 1969]. As the recent proof by
Wiles and Taylor of Fermat’s last theorem shows, they also constitute some of
the hardest problems in modern mathematics. While it is well known that there
are infinitely many Pythagorean triples of integers (x, y, z) satisfying

x2 + y2 = z2,

Fermat’s assertion that

xN + yN = zN , N ≥ 3

has no integer solutions turned out to be an incredibly difficult thing to prove.
Hilbert’s tenth problem is the general problem of deciding when a Diophantine
equation has integer solutions, and Matiyasevich proved the undecidability of
this problem. Moreover, Matiyasevich showed that any statement in a formal
system can be encoded as an equivalent Diophantine problem (see chapter 3 in
[Manin and Panchishkin 2005] for instance).



Diophantine Benchmarks for the B-Cell Algorithm 271

We propose that Diophantine problems make good (and difficult) benchmarks
for testing AIS and other evolutionary algorithms. There are two main rea-
sons why we have decided to consider Diophantine equations: firstly, because
when they arose in some work on discrete dynamics [Hone 2006], the fourth au-
thor wanted a simple algorithm that could find solutions without performing
an exhaustive search; and secondly, some Diophantine problems are close to an
associated smooth optimization problem, and so can be considered as being inter-
mediate between smooth fitness landscapes and the hardest deceptive problems
[Dasgupta 1994].

Using a simple idea mentioned in [Hone and Kelsey 2004], it is easy to con-
vert any Diophantine equation into an optimization problem, namely that of
minimizing the function

g(x, y, z, . . .) = |f(x, y, z, . . .)|
over Z (or equivalently one can minimize f(x, y, z, . . .)2). Thus one wants to
obtain integers x, y, z, . . . which give the global minimum value zero for this
function. Why are these problems hard? Well, in general one has no idea whether
a given problem has any solutions at all. Furthermore, although these algebraic
functions are smooth when considered as functions of real variables, the function
landscape over the integers can be very spiky (since there can be many real
minima which are very close to integer-valued local minima).

In this paper, we consider four different test problems. The prototype example
will be Markoff’s equation

x2 + y2 + z2 = 3xyz (2)

which has important applications in number theory, where it arises in the theory
of quadratic forms and Diophantine approximation (see [Burger 2000] for an
overview). We have chosen this example because it is known how to generate
all the solutions in a cube of a given size, and furthermore Zagier has shown
[Zagier 1982] that the number of positive triples (x, y, z) with

0 < x ≤ y ≤ z ≤ T

that satisfy (2) grows like
C log2(3T )

for a constant C ≈ 0.1807. When applying the BCA to finding solutions of (2),
the latter asymptotic result should be helpful in measuring how the algorithm
scales with the problem size, but we will not address this issue here.

Our first test problem is to solve a special case of (2), setting z = 433, which
reduces it to the 2D problem of finding positive integers that satisfy

f(x, y) = x2 + y2 + 4332 − 1299xy = 0. (3)

Part of the function landscape for the above problem is plotted (logarithmically)
in figure 2. We use the full 3D Markoff equation (2) as our second test problem,
and a variant considered by Mordell [Mordell 1969], namely
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x2 + y2 + z2 + 2xyz − 5 = 0, (4)

as the third test problem.
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Fig. 2. Contour plot of the function ln |f(x, y)|, with f as in equation (3), for positive
integer values of x ≤ 1000 along the sections y = 1, 2, 3, 4, 5

Our fourth, and hardest, problem is a Diophantine equation related to se-
quences of points on an elliptic curve (and associated with some integer sequences
suggested by Michael Somos [Gale 1991]), which is given by

z2 + (9x2 − 37y)xz + 9y2(y + 2x2) = 0. (5)

For this last problem, we do not explicitly know how to generate all the solutions,
although an obvious one is (x, y, z) = (1, 1, 1). We explain how we applied the
BCA to these four problems in the next section, and how the difficulty of the
problems led us to suggest various ways of making modifications to the algorithm.

4 Experimental Setup

For the first and second problems we applied the BCA to search between 0 and
1023 for each variable, in 2D and 3D respectively. For the more difficult three-
dimensional problems for which solutions exist with negative integer values, a full
16 bit integer was used for each variable, giving a search space of size 655363 ≈
3× 1014. On the simplest 2D problem the algorithm performed reasonably well,
finding a solution within 100 iterations more than 95% of the time. However in
the other cases, the algorithm would often get stuck at a local optimum with a
small value of the objective function g, and would make very slow progress until
much of the search space had been searched. For example, for the first problem for
equation (3) in 2D, the points (x, y) = (1, 165) and (165, 1) are two local minima
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Fig. 3. Plot of the function |f(x, 1)|, with f as in equation (3)

over the integers, since they are very close to a real-valued minimum of |f(x, y)|
- see figure 3, and note that f(x, 1) = 0 when x = (1299−√

937441)/2 ≈ 165.39.
Our initial data seemed to indicate that this “sticking” would happen to a

given population member within a very small number of iterations (of the order
of 100). In addition to this, Kelsey’s heuristic procedure for culling weakest
members seemed to make little difference to the algorithm’s performance. These
problems led us to experiment with several modifications to the BCA, designed
to improve its efficiency:

1. Megamutation (i): If the fitness of an individual in the population has not
changed after 75 iterations, a fully randomising mutation operator is applied
to that individual’s clones: in other words, they are reset to random strings.

2. Megamutation (ii): Extend megamutation by allowing clones with a lower
fitness to replace their parents regardless of their relative fitness.

3. Anti-elitism: At each iteration the fittest member of the population is killed
and replaced with a randomly initialized individual.

4. Megamutation (ii) + Anti-elitism: All modifications combined.

Of course the anti-elitism strategy is only suitable for problems where the
value of the optimum solution is known a priori, such as these Diophantine prob-
lems where we know that the value zero is an absolute minimum of g(x, y, z) =
|f(x, y, z)|. For problems where this is not the case, memory cells added into the
algorithm may be appropriate (in order to store the best solution so far).
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5 Results

All four versions of the algorithms were tested on the three Diophantine equa-
tions in 3D. A version of the algorithm which combined anti-elitism with the
second variant of the megamutation was also tested on the fourth equation.
All the algorithms used a population size and clone size of 10. The mutation
rate (probability of flipping each bit in the hotspot) was held fixed at 0.5. Each
experiment was run 100 times with various numbers of maximum iterations,
depending on the equation. The maximum number of iterations was set by ob-
serving the rate of convergence of the algorithms on each equation, and noting
that convergence almost never occurred beyond a certain point.

Table 1. Number of iterations out of 100 in which algorithm converged on the optimum

Problem Iterations BCA Algorithm #1 #2 #3 #4
#2 4,000 53 78 100 100 n/a
#3 100,000 36 90 84 100 n/a
#4 1,000,000 4 5 69 77 77

Table 1 shows the number of runs which converged before the maximum num-
ber of iterations was reached. The algorithms with megamutation found greater
numbers of optimal solutions than the original algorithm for all three equations
in 3D. However, the anti-elitist algorithm equalled or outperformed all the other
algorithms, converging for all the runs for equations 2 and 3, and converging
77% of the time for equation 4. No improvement was found by combining the
megamutation with the anti-elitism.

Table 2. Number of fitness evaluations (mean and standard deviation) for problem #2

Algorithm: BCA #1 #2 #3
Mean Fitness Evaluations ×104 6.3 4.7 2.6 4.4
Standard Deviation ×104 10.0 9.3 2.8 4.9

Table 2 shows the average and standard deviations of the number of evalu-
ations which were required to achieve convergence, thus giving an idea of the
amount of computational effort involved. This includes only the runs when the
algorithm did converge to an optimal solution (since it only makes sense to mea-
sure the average evaluations to the convergence when an optimal solution was
actually found). The megamutations reduced the average number of evaluations
required for equations 2 and 3, when compared with the original BCA. How-
ever, the number of evaluations increased with megamutation on equation 4.
The anti-elitism reduced the number of evaluations on all equations. Both the
megamutations and the anti-elitism also reduced the standard deviation of all
three equations. Observe that the standard deviations in table 2 are huge: in
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most cases, larger than the means. We have also calculated the analogous statis-
tics for problems #3 and #4 (see tables 3 and 4), but because of the large spread
of these distributions they are probably not the most meaningful statistics to
quote. To provide more detailed information, in figures 4,5 and 6 we have plotted
bar charts displaying the number of times (runs) out of 100 that the BCA or a
variant converged in a given number of steps (function evaluations).
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Fig. 4. Bar chart for problem #2

Table 3. Number of fitness evaluations (mean and standard deviation) for problem #3

Algorithm: BCA #1 #2 #3
Mean Fitness Evaluations ×106 2.4 2.1 2.1 0.57
Standard Deviation ×106 3.1 2.5 2.6 0.67

Table 4. Number of fitness evaluations (mean and standard deviation) for problem #4

Algorithm: BCA #1 #2 #3
Mean Fitness Evaluations ×107 4.0 6.3 5.3 3.9
Standard Deviation ×107 4.9 2.6 3.0 3.2

Since the megamutations provide a method of dealing with local optima, which
the original BCA does not have, the algorithms with megamutation are less likely
to remain stuck for long periods of time and thus can reduce the number of eval-
uations needed. The higher number of evaluations needed by the megamutation
algorithms for equation 4 can be explained as follows: when the original BCA
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finds an optimal solution, it does so within a small number of iterations, thus
the amount of work done by a successful BCA run is quite small, as most runs
tend to get stuck in local optima. Unfortunately, as we can see from table 1,
very few BCA runs are successful on equation 4. The megamutation algorithms
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(particularly the second version) find solutions with greater frequency, however
they spend more time moving in and out of the local optima from which the
BCA never escapes.

Culling the fittest member of the population (as with anti-elitism) may at first
seem counter-intuitive. However, if its fitness does not change for a certain given
period of time, the fittest member of the population is highly likely to be stuck
in one of the most difficult local optima. If it has a better fitness than it would
have in other nearby local optima, then its chances of escape are the slimmest of
the whole population. Thus it does make sense to cull the fittest individual, since
that individual has the lowest chance of improvement. This makes anti-elitism
a more intelligent (or targeted) culling, as opposed to the “cull everything that
doesn’t move for a while” approach of the megamutation.

6 Conclusions

This work has benchmarked the B-Cell algorithm on four Diophantine equations.
We have implemented three modified versions of this algorithm, all of which
outperformed the original in terms of the probability of finding a global optimum
within a given number of iterations and demonstrated a reduction of the average
number of function evaluations needed for a global optimum to be found. The
most successful modification is anti-elitism, which culls the fittest member of the
population when its fitness has not changed within a certain specified number
of steps.

Further work remains to be done, including:

1. Attempt to solve the same Diophantine equations using genetic algorithms
and/or swarm optimization for comparison with these results.

2. Apply the anti-elitism modified version of the BCA to other optimization
problems to gain a more general determination of its advantages.

3. Design and test a variant of the anti-elitism algorithm utilizing memory cells,
for problems where the optimal fitness value is not known.

There is a substantial literature on so-called deceptive problems for GAs,
and on finding modifications that result in better performance of GAs upon
application to these sorts of problems (see [Dasgupta 1994], for instance). Thus
it would also be good to use deceptive problems as another set of benchmarks
for AIS algorithms. In fact, for a Diophantine equation, there can be points
with very small but non-zero values of g = |f | (i.e. local optima) that are far
from the actual solutions in search space, so in this sense Diophantine equations
correspond to a particular class of deceptive problems.

It is also worth mentioning here that, quite recently [Andrews 2006], Paul
Andrews showed us his implementation of the AIS algorithm opt-aiNet, another
optimization algorithm introduced in [de Castro and Timmis 2002a]. When opt-
aiNet was applied to the simplest of our benchmarks (problem #1), it appeared
to perform very badly. In every trial that we saw, most of the fittest members
of the population remained near one of the local optima (1, 165) or (165, 1);
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other popular local minima were at (2, 74), (9, 16) and their images under the
reflection x ↔ y. However, this version of opt-aiNet was using (approximations
to) real numbers respresented in floating-point, which were then rounded to the
nearest integer; thus the comparison is not a fair one. It would be worth making
a proper comparison between these two algorithms in future, also comparing
with the results of [Timmis and Edmonds 2004].

In its most basic form (once the search space has been defined) the BCA
requires only one parameter to be specified, namely the mutation rate (i.e. the
probability that each bit in the hotpsot on a string will flip). Including the
megamutation strategy requires at least one additional parameter to be set,
namely the number of steps to wait before megamutation is applied. So far, we
have not explored the effect of scaling on the performance of the algorithm; the
benchmark problem #2 should be good for large-scale numerical tests, because
the asymptotic growth of the number of solutions is known in advance. Finally,
it would be good to develop other practical and theoretical methods for the
analysis of convergence of the BCA and similar algorithms.
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Abstract. The primary objective of this paper is to put forward a general frame-
work under which clear definitions of immune operators and their roles are 
provided. To this aim, a novel Population Adaptive Based Immune Algorithm 
(PAIA) inspired by Clonal Selection and Immune Network theories for solving 
multi-objective optimization problems (MOP) is proposed. The algorithm is 
shown to be insensitive to the initial population size; the population and clone 
size are adaptive with respect to the search process and the problem at hand. It 
is argued that the algorithm can largely reduce the number of evaluation times 
and is more consistent with the vertebrate immune system than the previously 
proposed algorithms. Preliminary results suggest that the algorithm is a valuable 
alternative to already established evolutionary based optimization algorithms, 
such as NSGA II, SPEA and VIS.  

1   Introduction 

Bio-Inspired Computing lies within the realm of Natural Computing, a field of re-
search that is concerned with both the use of biology as inspiration for solving com-
putational problems and the use of the natural world experiences to solve real world 
problems. The increasing interest in this field lies in the fact that nowadays we are 
having to deal with more and more complex, large, distributed and ill-structured sys-
tems, while on the other hand, one cannot help noticing that the apparently simple 
structures and organizations in nature are capable of dealing with the most complex 
systems and tasks with ease. Artificial Immune Systems (AIS) is one such recognized 
computing paradigm, which has been receiving more attention recently.  

Most previous research efforts in the AIS area were mainly concerned with fault 
diagnosis [1], computer security [2], and data analysis [3, 4] and only very recently 
have a few attempts seen AIS extended to the optimization field, and most of them 
being dedicated to solving single objective optimization problems (SOP) [5, 6]. The 
reason behind this is that it is relatively easy to create a direct link between real im-
mune system and the aforementioned three application areas, e.g. in applications of 
data analysis, clusters to be recognized are easily related to antigens (Ag), and the set 
of solutions to distinguish between these clusters is linked to antibodies (Ab) [3]. 
However, such direct links are vague in the optimization field, especially in the MOP 
field. The main difficulty in exploiting immune metaphors for optimization problems 
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is to find a way to define Ag and the affinity since there is no explicit Ag population 
to be recognized. For SOP, since there is only one objective to be achieved the object-
tive itself can be viewed as Ag. Therefore, the affinity can be defined as the evaluation 
of the objective function for a given Ab [5]. Such an implicit definition of Ag is reck-
oned to be more difficult to be used in a MOP context for the objectives are now mul-
tiple. 

In [7], the authors argued that AIS has, in its elementary structure, the main fea-
tures required to solve MOP. There have been several attempts to address this in the 
literature [8~12] but none of these presented a formal systematic framework due to 
the aforementioned reasons. Some of them are coupled with other evolutionary 
mechanisms [8, 12], and others sacrifice some biological metaphors in exchange for a 
better performance [9, 10]. If one wishes to make AIS a new alternative computing 
paradigm to solve MOP, clear definitions of each part of the immune metaphors and 
their corresponding roles added to a general accepted framework are more pressing at 
the moment than any specific algorithms. Furthermore, identifying the difference be-
tween AIS and the traditional evolutionary algorithms for solving MOP and what it is 
the extra strength that AIS can offer is more meaningful than just providing relatively 
better comparative results.  

Based on such understanding, this paper presents a systematical AIS framework to 
solve MOP with clear definitions and roles of the immune metaphors to be employed. 
The new algorithm is mostly inspired by Clonal Selection [13] and Immune Network 
[14, 15] theories, and is mainly based on the previous research in [3~5]. After com-
paring this algorithm to other state-of-the-art MOP algorithms using the ZDT1~ZDT4 
benchmark functions, emphasis is placed on the following: 1) the difference between 
AIS and traditional evolutionary algorithms, 2) the extra advantages that are exclu-
sively inherent in AIS and alike. Finally, it will be argued that if one considers each 
objectives’ combination as a unique antigen intruding on the immune system, MOP is 
also an ideal test bed for the immune mechanism simulation. 

2   Background  

2.1   Multi-objective Optimization 

Many real-world problems are inherently of a multi-objective nature with often con-
flicting issues. Generally, MOP consists of mini/maximizing the vector function: 

( ) ( ) ( ) ( ) T
m xfxfxfxf ],,,[ 21=  . (1) 

subject to J inequality and K equality constraints as follows: 

( ) ( ) KkxhJjxg kj ,10;,10 ===≥  . (2) 

where Ω∈= T
nxxxx ],,,[ 21

 is the vector of decision variables and Ω is the 
feasible region. There are two main methods that allow to deal with MOP, namely the 
ideal multi-objective optimization procedure and the preference-based multi-objective 
optimization procedure [16]. The fundamental difference between these two is that 
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the latter relies heavily on the experiences of the particular user and the obtainable 
higher-level problem information. The higher-level information is used to choose a 
preference vector so that multiple objectives can be aggregated into a single objective. 
In doing so, MOP is actually transformed into SOP. However, because of its high 
dependence on preference information this approach is sometimes subjective and im-
practical. Facing the possibility of lacking the problem information, the ideal multi-
objective optimization procedure has been given more attention. Through this 
method, a set of trade-off solutions is found. By finding the set of solutions humans 
can understand the problem in greater depth, and finally a single optimal solution to a 
specific scenario is finally decided.  

The prevalence of the ideal method calls for a new philosophy to deal with the 
problem since one wants to find a set of uniform-distributed optimal solutions simul-
taneously through a single run, rather than several runs. For this reason, population-
based Genetic algorithm (GA) steps in sight. GA was originally developed to solve 
SOP. In this case, all solutions in the population will finally converge to a single op-
timum. To make traditional GA suitable to maintain a solution set, the sharing method 
is used [17]. In this way and alike, different species can format and co-exist in the fi-
nal population. Despite its great ability in maintaining trade-off solutions and dealing 
with non-convex problems, population-based GA suffers from two main problems: 

1. It is sensitive to the setting of the sharing parameters.  
2. It depends highly on the population size to preserve its search capability. 

Solving the above problems is our initial intention to develop a population adaptive 
based immune algorithm (PAIA), which is further discussed in Section 3. 

2.2   The Immune System 

The vertebrate immune system is highly complex and possesses multi layers. Here, 
what one is interested in is the third layer, namely, the adaptive immune system, 
which can learn and adapt to most previously unseen antigens, and can respond to 
such patterns quickly in the next sample. Among many immunological models, the 
Clonal Selection and the Immune Network theories are the two branches which were 
emulated in this work. Another immune metaphor which was exploited is the way that 
the immune system controls its Abs’ concentration.  

Clonal Selection Principle.  The Clonal Selection Principle describes the basic fea-
tures of an immune response to an antigenic stimulus, and establishes the idea that 
only those cells that recognize the antigen are selected to proliferate. The key proce-
dures are: 1) Selection: the B-cell with a higher affinity than a threshold is selected to 
clone itself; 2) Proliferation: the selected B-cells produce many offspring with the 
same structure as themselves; the clone size is proportional to the individual’s affin-
ity; 3) Affinity Maturation: this procedure consists of Hypermutation and Receptor 
Editing [18]; in the former case, clones are subjected to a high-rate mutation in order 
to differentiate them from their parents; the higher the affinity, the lower the mutation 
rate; in the latter case, cells with a low affinity, or self-reactive cells, can delete their 
self-reactive receptors or develop entirely new receptors; 4) Reselection: after affinity 
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maturation, the mutated clones and edited cells are reselected to ensure that only 
those cells with a higher affinity than a certain threshold survive. The whole process 
is performed iteratively until a certain stable state is achieved. In PAIA, the principle 
is used to provide a selection pressure to effectively drive the population towards the 
Pareto front over many iteration steps. 

Immune Network Theory.  According to this theory, Abs not only have paratopes 
but also epitopes. This results in the fact that Abs can be stimulated by recognizing 
other Abs, and for the same reason can be suppressed by being recognized. Conse-
quently, the immunological memory can be acquired by this self-regulation and 
mutual reinforcement learning of B-cells. In [19], Farmer et al. created an immune 
network model defined by a differential equation which demonstrates that Abs’ con-
centration is determined by two activations-Abs’ activation and Ags’ activation, one 
suppression-Abs’ suppression, and Apoptosis. The suppression function is a mecha-
nism that allows to regulate the over-stimulated B-cells to maintain a stable memory. 
This metaphor is used in PAIA to regulate the dynamics of the population.  

Abs’ Concentration.  Initially, only a small number of B-cells cruise in the body. If 
they encounter foreign Ags, some of them are activated and then they proliferate. The 
immune system should maintain a specific Abs concentration. This process is adap-
tive, i.e. the number of clones that are proliferated during the activation process and 
how many of them are maintained at each iteration step and at the end in order to neu-
tralize Ags is adaptive. This makes sense since if a large number of initial B-cells is 
available then undoubtedly it can kill any Ags at the cost of spending more energy to 
activate B-cells and secrete Abs. However, only an optimal number of B-cells during 
each step is necessary (less means more time is needed to reach the required concen-
tration; more means redundant B-cells are introduced). This is the main inspiration for 
us to design PAIA’s structure so that the population is adaptive at each iteration step. 

3   The Algorithm 

The synthesis of the above three immune metaphors generates the new algorithm-
Population Adaptive Based Immune Algorithm (PAIA), which aims to: 

1. provide a generic AIS framework for MOP solving; 
2. make the population size adaptive to the problem; 
3. reduce the evaluation times so that only the necessary evaluations are carried out; 

Here, we mainly discuss the last two aims, and leave the first one until after pre-
senting the whole algorithm. The last two aims are related to the last problem raised 
in Section 2.1 which needs detailing. To preserve the search capability, all population-
based GAs require a sufficiently large population, and such a population is fixed  
during the search mechanism. This makes the initial population size crucial to the 
success of such algorithms. Deb pointed out in [16] that NSGA II failed to converge 
to the true Pareto front for ZDT4 using a population of 100. He suggested (but not 
proved) that 500 may be needed for a successful outcome. Hence, the population size 
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is obviously problem-contingent. This leads to following legitimate question: how can 
one know that the population size is sufficient for a more complicated problem? And 
on the other hand, how can one be sure that the population size is not redundant for a 
simpler problem? If one failed in the first scenario the true Pareto front can never be 
approached; or if they failed in the second case one could end up with many  
redundant evaluation times, which is more severe than it looks since in real life it is 
expensive and time consuming to evaluate objective functions [20]. However, due to 
its mating scheme and selection mechanism population-based GA has to have its 
population size fixed. 

Can AIS, as a new computing paradigm, offer a solution? This paper gives the an-
swer by addressing the following two questions: 

1. Does one still need to fix the size of the population?  
2. Can the population size adapt to the problem so that the initial population size is no 

longer crucial to the success of the algorithm?  

If the answers to both questions are ‘yes’, then another problem to be addressed is 
how one can control the population size during the search. The problem is tackled by 
emulating the third immune metaphor discussed in Section 2.2. The accomplishment 
of aim 2 makes aim 3 automatically achieved since only the necessary Abs are pre-
served during each step. 

3.1   The PAIA Algorithm 

The basic definitions are first given so that one can describe the algorithm with  
clarity: 

− Antigen (Ag): Ag is the problem to be optimized. 
− Antibody (Ab): Ab is the candidate solutions of the problem to be optimized. 
− Ag-Ab affinity: for SOP, it is defined as the objective (fitness) value; for MOP, it 

is determined by using the non-dominance concept, i.e. solutions in the first non-
dominated front have the highest affinity, then the second front, and so on.  

− Ab-Ab affinity (Abs’ affinity): it is defined as the distance (refer to Eqs. (3)) in 
the decision variable space between one randomly chosen Ab in the first non-
dominated front and the one in the remaining population. 

− Ab-Ab suppression (Abs’ suppression/Network suppression): when two Abs 
are very close to each other, they can recognize each other. The result is that one of 
them is suppressed and deleted. Unlike Abs’ affinity, this term is defined as the 
Euclidian distance in the objective space. 

The PAIA algorithm can be described via the following steps: 

1. Initialization: a random Ab population is first created. 
2. Identify_Ab: one random Ab in the first non-dominated front is identified. 
3. Activation: the identified Ab is used to activate the remaining dominated Abs. 

Dominated Abs’ affinity value (NB: affinity is the inverse of the affinity value) is 
calculated according to Eqs. (3), where n is the dimension of the decision variables. 
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    The non-dominated Abs’ affinity value is calculated as follows: I. if the size of 
dominated Abs is not zero, the affinity value equals the minimum affinity value of 
the dominated Ab divided by two; II. otherwise, the affinity value is calculated ac-
cording to Eqs. (4), where N is the size of non-dominated Abs. 

Nnixixvalaff
N

j

n

i
jidentifiednd /)/)()((_

1 1= =

−=  . 
(4) 

    In this way, Ag-Ab affinity is indirectly embedded in Abs’ affinity since non-
dominated Abs always have the smallest affinity value (the highest affinity).  

4. Clonal Selection: Clonal selection consists of three steps: I. Abs with the smallest 
affinity value are selected, i.e. non-dominated Abs are always selected; II. Abs in 
the remaining population with affinity value smaller than a threshold (δ ) are se-
lected; III. unselected Abs are kept in a different set. 

5. Clone: I. for selected Abs, a maximum clone size (Ncmax) is pre-defined; then a 
fraction of Ncmax is allocated to each selected Ab according to its affinity percentage, 
i.e. the higher the percentage the larger the fraction is assigned; II. Unselected Abs 
are cloned once regardless of their affinity. 

6. Affinity Maturation: I. selected Abs are submitted to hypermutation, i.e. one di-
mension of the Ab is randomly chosen to mutate; the mutation rate is proportional 
to the affinity value (inversely proportional to affinity); the whole process is calcu-
lated using Eqs. (5). II. unselected Abs are submitted to receptor editing which 
means that more than one dimension (two, in PAIA) are randomly chosen to mu-
tate; the mutation rate is calculated using Eqs. (5). 
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    where N (0, 1) is a Gaussian random variable with zero mean and standard devia-
tion 1. i represents the dimension that has been chosen to mutate. 

7. Reselection: the mutated/edited clones and their corresponding parents are com-
bined together and reselected: I. all non-dominated Abs are selected; II. if the 
number of current non-dominated Abs (NCR) is less than the initial population size 
(IN), Abs from the next non-dominated front are selected according to their recal-
culated Abs’ affinity value (the ones with smaller affinity values are favoured) to 
fill the difference between these two; this process continues until the difference is 
filled; III. only when NCR is greater than IN and greater than the number of the 
non-dominated Abs in the last iteration (NPR) can Network Suppression be in-
voked to suppress any too-close Abs. 

8. Network Suppression: the Euclidian distance in objective space between any two 
Abs is calculated; if it is less than a predefined network threshold (σ ) the one with 
the larger affinity value is suppressed and deleted; this operator is invoked in step 7 
when certain conditions are satisfied. 

9. Iteration: the process is repeated from step 2 until certain conditions are met. 

In the following, some differences between PAIA and previous research are high-
lighted. Further discussion can also be found in Section 5. 
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− In PAIA, the initial population size can be any number (even 1). However, only an 
optimal initial size can lead to the most efficient way of dealing with the problem.  

− Most previous research did not emulate Clonal Selection. In PAIA, it is emulated 
to fully exploit the selected Abs so that they have more opportunities to be cloned 
and mutated in the early iteration steps, which can speed up the convergence.  

− Most previous works used a fixed clone size for every Ab. In PAIA the clone size 
is adaptively decided by the number of selected Abs and their affinities. 

− A new method (Eqs. (5)) is proposed to calculate the mutation rate, which ensures 
that the mutation rate is at least 0.371. The exploration ability is thus preserved 
even when all Abs converge to a single (sub) optimum. 

− In PAIA, the population size is not fixed, but is finally controlled byσ . The popu-
lation is regulated by network suppression so that any too-close Abs are sup-
pressed. The way to invoke network suppression is adaptive to the search process.  

3.2   The Generic AIS Framework  

Although PAIA is a specific MOP algorithm, the main structure of the algorithm can 
be extracted as a generic AIS framework for MOP solving, as shown in Fig. 1. 

Random Initialization

Stop?

Activation

Clonal Selection

Clone

Affinity Maturation

Reselection

NCR>NPR
& NCR>IN?

Network Suppression

Memory Set

Next Population

Newcomers

End
Yes

No

No

Yes

 

Fig. 1. Generic AIS framework for MOP solving (NCR: the number of current non-dominated 
Abs; NPR: the number of non-dominated Abs in the last iteration; IN: the initial Abs size) 

Two kinds of activation are emulated, namely Ag-Ab activation and Ab-Ab activa-
tion, so that one obtains information from both the objective space (Ag-Ab affinity) 
and the decision variables space (Abs’ affinity) to select Abs. The Clonal Selection 
and Clone prefer good Abs by giving them more chances to be cloned so that they 
always dominate the whole population. Affinity Maturation increases the diversity of 
the population so that more objective landscape can be explored. Reselection ensures 
that good mutants are inserted into the memory set and bad Abs apoptosis. Network 

                                                           
1 If Abs are normalized, then aff_val is within 0~1; so α is within 0.37~1 according to Eqs. (5). 
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Suppression regulates the population so that it is adaptive to the search process. New-
comers are used to further increase the diversity of Abs (it is not used in PAIA and is 
included here for completion). It is argued here that each part of the framework can be 
implemented in various means; while the basic structure remains unchanged.  

4   Experiments 

The proposed approach is compared to two well-known algorithms-NSGA II [16] and 
SPEA [21], and another immune algorithm-VIS proposed by Freschi et al. [7]. By 
comparing with NSGA II and SPEA, it is shown that PAIA is a valuable alternative to 
standard algorithms; by comparing with VIS, the difference between these two im-
mune algorithms is identified. ZDT1~ZDT4 test suite [16] is used for such a compari-
son. These test functions have two objectives and represent the same type of problems 
with a large decision variable space, a concave and discrete Pareto front, and many 
local optima. Results of NSGA II and SPEA are taken from [16] with a population 
size of 100 and a maximum of 250 generations. This gives a total number of 25000 
evaluation times. To make the comparison fair, VIS is also run using the same setting 
(26000 for ZDT4). For PAIA, although the population is adaptive the final population 
can be controlled byσ . Hence, one can set an adequate value forσ  so that the final 
population size and evaluation times are around 100 and 25000 respectively. NSGA II 
failed to converge for ZDT4 even with a larger number of evaluation times, while on 
the other hand, although some algorithms may not fully converge within 25000 
evaluations they have no difficulty to converge using larger evaluations. For this rea-
son, one can also compare PAIA and VIS when both have fully converged (otherwise, 
it is only the best results to be used). Two performance metrics, namely the Genera-
tional Distance (GD) and the Spread Δ [16], are used and are defined as follows [11]: 

• Generational Distance: GD measures the closeness of the obtained Pareto solu-
tion set Q from a known set of Pareto-optimal set P*. 
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For a two-objective problem (m=2), di is the Euclidean distance between the solu-
tion i∈Q and the nearest member of P*. 

• Spread: Δ measures the diversity of the solutions along the Pareto front in the 
final population. 
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where di is the distance between the neighbouring solutions in the Pareto solution 

set Q. 
__

d is the mean value of all di. e
md is the distance between the extreme solu-

tions of P* and Q along the mth objective.  
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4.1   Experiment 1 (25000 Evaluations) 

In this experiment, the number of iterations was set to 280, IN = 7, δ = 0.4, and Ncmax 
= 95 for all four test problems; σ = 0.0074 for ZDT1~ZDT3 and 0.0078 for ZDT4 so 
that the final population size and evaluations are around 100 and 25000 respectively. 
The results are obtained as the average values of 10 independent runs and are shown 
in Fig. 2. 
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Fig. 2. (a) Pareto solutions obtained by PAIA on ZDT1~ZDT4; (b) Adaptive population size Vs 
iteration; (c) Adaptive clone size (the assigned maximum clone size among all Abs) Vs  
iteration 

Table 1. Mean and variance values relating to the convergence measure GD 

Algorithm 
ZDT1 

   GD        2σ  

ZDT2 

   GD         2σ  

ZDT3 

   GD         2σ  

ZDT4 

   GD         2σ  
NSGA II 8.94e-4 0 8.24e-4 0 4.34e-2 4.20e-5 3.228 7.3076 

SPEA 1.25e-3 0 3.04e-3 2.00e-5 4.42e-2 1.90e-5 9.514 11.321 

VIS 1.81e-3 1.97e-7 1.21e-3 1.04e-6 1.58e-3 2.26e-7 0.1323 4.20e-2 

PAIA 1.43e-4 1.56e-9 1.04e-4 2.2e-11 1.58e-4 4.6e-10 1.20e-3 1.88e-7 

The results shown in Tables 1, 2 and 3 indicate that PAIA reached a better per-
formance than any of other three algorithms using similar evaluation times. From Fig. 
2 (b), one can see that the population adaptively increases/decreases during each itera-
tion step and can be finally controlled byσ , which means that only necessary Abs are 
maintained during the search and at the end. From Fig. 2 (c), one can see that the 
clone size is adaptively decided by the number of selected Abs and their correspond-
ing affinities. If the number of selected Abs is small, each selected Ab can be assigned 
a large clone size so that the population is large enough to explore the objective space. 
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Although the results of PAIA for ZDT4 are much better than for other algorithms’, it 
has not fully converged to the true Pareto front. This result can be further improved 
by using more iteration steps and such results can be found in experiment 2. 

Table 2. Mean and variance values relating to the diversity measure Δ  

Algorithm 
ZDT1 

   Δ          2σ  

ZDT2 

   Δ          2σ  

ZDT3 

   Δ          2σ  

ZDT4 

   Δ          2σ  
NSGA II 0.4633 4.16e-2 0.4351 2.46e-2 0.5756 5.08e-3 0.4795 9.84e-3 

SPEA 0.7302 9.07e-3 0.6781 4.48e-3 0.6657 6.66e-4 0.7321 1.13e-2 

VIS 0.5420 8.25e-3 0.6625 2.58e-2 0.6274 1.60e-2 0.1011 1.37e-3 

PAIA 0.3368 1.10e-3 0.3023 7.07e-4 0.4381 1.50e-3 0.3316 1.20e-3 

Table 3. Final population size and evaluation times of PAIA 

Final Population Evaluation Times Test 
suite    Mean           Max/min Mean         Max/min 

ZDT1 96 101/87 25372 26467/24494 

ZDT2 101 106/96 25950 26649/25371 

ZDT3 94 102/89 25365 26155/24587 

ZDT4 96 103/85 25910 26654/25203 

4.2   Experiment 2 (Full Convergence) 

In this experiment, the number of iterations was set to 180 for ZDT1 and ZDT2, to 
280 for ZDT3 and to 500 for ZDT4. Other parameters remained unchanged. 
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Fig. 3. Pareto solutions obtained by PAIA on ZDT1~ZDT4 

Through this experiment, it was found that PAIA possesses very fast convergence 
properties. For ZDT1 and ZDT2, 180 iterations were enough for convergence, and for 
ZDT4 500 iterations were sufficient. For all the four test problems, both algorithms 
obtained good performances (except ZDT4 in VIS) in terms of both metrics. From 
Table 5, one can see that PAIA generally uses fewer evaluations to achieve good 
results. Although it used 46899 evaluations to fully converge, it only used 25910 (see 
Table 3) evaluations to obtain similar results as those produced by VIS (see Table 4). 
This is due to two reasons: 1) PAIA only preserves necessary Abs during each itera-
tion step so that only the necessary evaluations are carried out; 2) PAIA uses adaptive 
clone size so that only the necessary clone size is assigned to each selected Ab. One 
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can see from Fig. 2 (c) that in most cases the clone size is 1. While on the other hand, 
VIS and most previous works use a fixed clone size (4 in VIS). This generally leads to 
two main problems: 1) in the early stage, a fixed clone size may not be large enough 
to speed up the convergence; 2) in the later stage, a fixed clone size may be too large 
so that at each iteration step many unnecessary clones are produced. 

Table 4. Mean and variance values of GD and Δ for PAIA and VIS 

Algorithm 
ZDT1 

   GD        2σ  

ZDT2 

   GD         2σ  

ZDT3 

   GD         2σ  

ZDT4 

   GD         2σ  
VIS 1.32e-4 1.12e-9 1.10e-4 2.2e-12 1.23e-4 1.9e-11 1.23e-3 1.12e-6 

PAIA 1.58e-4 2.31e-9 1.06e-4 5.7e-11 1.58e-4 4.6e-10 4.96e-4 1.53e-8 

Algorithm    Δ          2σ     Δ          2σ     Δ          2σ     Δ          2σ  

VIS 0.3142 6.31e-4 0.2123 3.12e-3 0.3451 1.22e-3 0.0834 1.12e-4 

PAIA 0.3522 1.10e-3 0.3443 1.50e-3 0.4381 1.50e-3 0.3058 1.00e-3 

Table 5. Final population size and evaluation times of PAIA and VIS 

Final Population Evaluation Times Test 
suite PAIA(mean)       VIS PAIA(mean)      VIS 

ZDT1 93 100 15844 28523 

ZDT2 95 100 15856 29312 

ZDT3 94 100 25365 32436 

ZDT4 97 100 46899 38956 

5   Discussions 

5.1   The Differences Between AIS and Population-Based GA 

It is clear that the proposed algorithm-PAIA offers significant advantages. However, as al-
ready stated in Section 1, presenting comparative good results is not the main objective of 
this study. It was felt that only when the differences between AIS and traditional popula-
tion-based GAs are clarified, can one fully exploit the extra advantages that are exclu-
sively included in AIS. The fundamental differences can be summarized as follows: 

1. Reproduction mechanism: AIS represents a type of asexual reproduction; while 
on the other hand, population-based GA represents the counterpart. Through the 
latter, the offspring is produced by crossing the chromosomes of both parents. 
Through the former, each Ab copies itself to produce many clones. 

2. Selection scheme: For population-based GA, good solutions are selected into the 
mating pool with high probability. For AIS, good solutions are always selected. 

3. Evolution strategy: For population-based GA, the whole population evolves by 
using crossover. The hypothesis is that if both parents are the good ones their 
crossed offspring would have a high probability of becoming even better solutions; 
mutation is only used to jump out of the local optima (diversity is very important), 
otherwise, GA is likely to lead to premature convergence; for AIS, since clones are 
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duplicates of their predecessors the evolution of the population depends on muta-
tion of the clones. 

4. Elitism: For population-based GA, during each generation, the whole population is 
replaced with the offspring after mating; so ‘elitism’ has to be introduced to pre-
serve good solutions found so far, otherwise they would be lost during generations; 
for AIS, the mutated clones and their predecessors are mixed together to compete 
for survival, so the ‘elitism’ is inherently embedded in AIS 

5. Population control: For the population-based GA, since one has to specify the 
size of the mating pool in the first place the population size is thus fixed during 
each generation; if one only selects good solutions into the mating pool and makes 
the pool size flexible to the number of selected solutions GA could end up reaching 
premature convergence due to its evolutionary strategy; a reasonable pool size is 
necessary so that in the early stages sub-optimal solutions can also be included in 
the pool to increase population diversity; for AIS, a mating pool does not exist 
hence the population can be flexible and finally controlled by the mutual influences 
of Abs. 

5.2   Extra Strength of AIS  

If one recognizes all these differences AIS should offer extra strengths, which have 
been implemented in PAIA and are summarized as follows: 

1. Adaptive population. Network suppression was first proposed in [3] to perform 
data analysis. In PAIA, it is used to regulate the population. The main point is that: 
it allows any selected Ab to get into to the population as long as it is far enough 
from any other Ab. This flexible rather than fixed population plus adaptive clone 
size make the population adaptive in the problem. 

2. Initial population size is not crucial to the success of PAIA. Due to the nature of 
the adaptive population, whatever initial size is used the population can be adap-
tively adjusted to a reasonable size according to the need of the problem. Although 
the results are not shown in this paper, in other experiments it was found that one 
can use any number as the initial population size (even 1) and the results in terms 
of performance metrics are equivalently good as the ones presented in this paper. 
The only difference is if an optimal initial size is chosen the evaluations can be 
largely reduced. 

3. Fast convergence. In PAIA, even a small initial size (e.g. 7) can give a very fast 
convergence because one only selects good Abs and let them reproduce with an 
adaptive clone size. In the early iterations this cannot only provide sufficient Abs 
to support the search but also accelerates the convergence. 

4. Only necessary evaluations are exercised. Since only a necessary population size 
and clones are maintained and produced in each iteration step, only necessary 
evaluations are carried out. One can see from Table 5 that PAIA used 46899 
evaluations to converge for ZDT4. If one uses the same setting for NSGA II (a 
population of 100 and 500 generations) 50000 evaluations would be needed. 

5. Parameter less. The only parameter crucial to the success of PAIA is the way to 
calculate the mutation rate. However, an adequate combination of parameters can 
efficiently tackle this problem (using a fewer evaluations). 
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5.3   MOP-Ideal Test Bed for Immune Mechanism Simulation 

Figure 2 (b) is a reflection of the immune response from Ab when stimulated by Ag. 
It can be seen that the population (Ab concentration) keeps increasing with the pres-
ence of antigenic stimulus until a stable concentration level is achieved. If without 
local extrema, then a problem (i.e. ZDT1~ZDT3) can be regarded as an unvaccinated 
immune system (whose Ab concentration bears characteristics illustrated in the first 
three graphs in Figure 2 (b), and such a characteristic is seen as primary immune 
response). On the other hand, when a problem has many local extrema and these ex-
trema share some resemblances (ZDT4), it corresponds to an immune system with 
continuous vaccinations. As in the last graph of Figure 2 (b), the Ab concentration 
initially reacts as a primary response, however, in the following vaccinations the peak 
values match each set of extrema and this is recognized here as secondary response. 
Therefore, if a test problem is adequately designed according to the above principle, 
MOP will be an ideal test bed for the immune mechanism simulations. 

6   Conclusions and Further Research 

Our conclusion is that, as a solution to a MOP, AIS offers advantages over traditional 
population-based GA schemes. Such superiority is based on the fact that AIS is in-
spired by a different regime of natural mechanisms. As a result, one could identify 
two directions for future research; one is to improve PAIA such as its mutation opera-
tor and termination condition. The other is to further compare and understand the 
differences between AIS and GA so that one can be confident in deciding which one 
is more suitable to handle a specific problem. 
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Abstract. This work presents omni-aiNet, an immune-inspired algo-
rithm developed to solve single and multi-objective optimization prob-
lems, either with single and multi-global solutions. The search engine
is capable of automatically adapting the exploration of the search space
according to the intrinsic demand of the optimization problem. This pro-
posal unites the concepts of omni-optimization, already proposed in the
literature, with distinctive procedures associated with immune-inspired
concepts. Due to the immune inspiration, the omni-aiNet presents a pop-
ulation capable of adjusting its size during the execution of the algorithm,
according to a predefined suppression threshold, and a new grid mecha-
nism to control the spread of solutions in the objective space. The omni-
aiNet was applied to several optimization problems and the obtained
results are presented and analyzed.

1 Introduction

During the last decades, the optimization field has been benefited from the con-
tinued sprouting of efficient optimization algorithms. These algorithms have been
applied to an expressive number of different real-world problems, leading to very
encouraging results. However, optimization problems appear in different types
and forms: some may have a single objective (known as single-objective op-
timization problems); some may have multiple conflicting objectives (known as
multi-objective optimization problems); some problems may have only one global
optimum, requiring the task of finding this optimum; and other problems may
contain more than one global optimum in the search space, thereby requiring the
task of simultaneously finding multiple global optimal solutions. This variability
in features and objectives guided to the proposition of algorithms specialized in
each kind of problem, what forced users to know different algorithms in order to
solve different kinds of optimization problems.

A straight attempt to revert this tendency was made by Deb and Tiwari
[8]. In their work, they propose and evaluate a single evolutionary optimization
algorithm for solving different kinds of function optimization problems: single or

H. Bersini and J. Carneiro (Eds.): ICARIS 2006, LNCS 4163, pp. 294–308, 2006.
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multi-objective problems and uni or multi-global problems. The proposed omni-
optimizer algorithm, hereafter denoted DT omni-optimizer, is mainly based on
a ranking procedure that uses a modified constrained dominance principle and
adapts itself to solve different kinds of problems. Further explanation of this
ranking procedure will be given in Section 4.

In the field of evolutionary computation, a relatively novel computational
paradigm, namely Artificial Immune System (AIS), was originated from at-
tempts to model and apply immunological principles to problem solving in a wide
range of areas such as optimization, data mining, computer security and robotics
[4]. Three advantages of advanced AISs over other population-based strategies
are: (i) they are inherently able to maintain population diversity (modules with
some resemblance with niching and fitness sharing are intrinsic parts of the algo-
rithm); (ii) the size of the population at each generation is automatically defined
according to the demands of the application; and (iii) local optimal solutions
are simultaneously preserved once located.

Based on the successful application of AISs to several kinds of function opti-
mization problems ([3], [5] and [7]), this work presents a novel proposal called
omni-aiNet, which unites the flexibility given by the principles of the DT omni-
optimizer [8] with the intrinsic advantages of AISs over other population-based
strategies. The results obtained with this basic version of omni-aiNet indicated
that the algorithm is very effective to deal with demanding scenarios, although
some improvements are still required.

This paper is organized as follows. Section 2 presents a brief introduction
to the concepts of AISs and the main immunological theories that inspired the
proposed algorithm. Section 3 introduces some formalism of function optimiza-
tion and depicts the notation that will be used throughout the paper. Section
4 presents and details the proposed algorithm, and Section 5 outlines a brief
conceptual comparison between omni-aiNet and the DT omni-optimizer [8]. The
description of the experiments and the presentation of the obtained results are
fulfilled in Section 6. Finally, Section 7 draws some concluding remarks.

2 Artificial Immune Systems

The natural immune system can be considered one of the most important com-
ponents of superior living organisms. The permanent cycle of recognition and
combat against pathogens (infectious foreign elements) has the goal of keep-
ing the organism healthy. The molecular patterns expressed in those invading
pathogens or antigens are responsible for triggering the immune response when
properly recognized by the immune cells.

Some of the cells with major roles in the immune response are the lymphocytes,
which can be divided into two types: B lymphocytes (B cells) and T lymphocytes
(T cells). The present description will focus only on the B cells. When an antigen
is detected, the B cells that best recognize the antigen (best affinity) will prolif-
erate by cloning. Some of the clones will differentiate into plasma cells (the main
antibody secretors) while the others will differentiate into memory cells. These
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memory cells guarantee a faster response to similar antigens that may invade the
organism in the future. After the cloning phase, the new generated cells suffer a
process of hypermutation with variation rates inversely proportional to each cell
affinity to the antigen (the highest affinity cells suffer the lowest variation and
vice-versa). The resulting cells with best affinity are subsequently selected to
remain in the B cell population, while the cells with lower affinity and cells that
have become harmful to the organism after the hypermutation are eliminated.

This cloning and hypermutation processes are essential parts of the Clonal
Selection Principle [2]. This principle is one of the main inspirations of the pro-
posed algorithm.

Another important immune concept is the Immune Network Theory proposed
by Jerne [11]. This theory states that antibodies are not only capable of rec-
ognizing antigens, but they are also capable of recognizing each other. When
an antibody is recognized by another one, it is suppressed. This mechanism al-
lows the immune system to remain in a dynamic equilibrium and to respond
accordingly to each external stimuli (antigen invasion).

Founded on the Immune Network Theory and on the Clonal Selection Princi-
ple, the self-maintenance of diversity in the population and the simultaneous
search for multiple high-quality solutions are distinctive aspects of immune-
inspired algorithms devoted to the solution of optimization problems.

The omni-aiNet algorithm is proposed here as a new member of the aiNet fam-
ily of algorithms, which consists of four immune inspired algorithms. The first al-
gorithm, aiNet (Artificial Immune Network) was proposed by de Castro and Von
Zuben in [6] to perform data analysis and clustering tasks. In a subsequent work,
de Castro and Timmis developed a version of aiNet for multimodal optimiza-
tion problems, called opt-aiNet (Artificial Immune Network for Optimization)
[5]. The third algorithm, copt-aiNet was further proposed by Gomes et al. in [9]
as an extension of opt-aiNet for combinatorial optimization tasks. The fourth
algorithm, dopt-aiNet (Artificial Immune Network for Dynamic Optimization)
[7], is an improved and extended version of opt-aiNet for time-varying fitness
functions. In all works, the authors demonstrated empirically the suitability of
the cited algorithms for each kind of optimization problem, with competitive
results when compared to the literature. The essence of the proposal presented
in this work, omni-aiNet (Artificial Immune Network for Omni-optimization),
is mainly based on opt-aiNet, but incorporates some mechanisms introduced by
dopt-aiNet.

3 Basic Optimization Concepts

The main goal of this section is to formalize the kind of problems that will be
treated in this work and to give definitions of some concepts commonly adopted
in optimization (specially multi-objective optimization) that will be used in the
remaining parts of the paper.

In this work, all problems that will be treated by omni-aiNet will be considered
as a constrained M -objective (M ≥ 1) minimization problem as follows:
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Minimize (f1(x), f2(x), . . . .fM (x)),
Subject to gj(x) ≥ 0, j = 1, 2, . . . , J,

hk(x) = 0, k = 1, 2, . . . , K, (1)
xL

i ≤ xi ≤ xU
i , i = 1, 2, . . . , n,

where n is the number of variables (dimension of the problem), J is the number
of inequality constraints, K is the number of equality constraints, xL

i is the lower
bound of variable i and xU

i is the upper bound of variable i. The only mandatory
constraints for the algorithm are the bounds of the search space (xL

i and xU
i ).

For the problem given in Formulation 1, n-variable solution vectors that sat-
isfy all constraints are called feasible solutions. These solutions will be optimal
if they individually satisfy a number of Karush-Kuhn-Tucker optimality condi-
tions, which involves finding the gradients of objective and constraint functions
[1].

When we have a single objective f , the optimal solutions correspond to the
points that have the smallest values of f , considering the whole search space (in
a minimization problem). However, for several objective functions, the notion
of “optimal” solution changes, because the aim now is to find good trade-offs
among the objective functions. In this case, the most commonly adopted notion
of optimality is the one associated with the Pareto front. A solution x∗ belongs
to the Pareto front if there is no other feasible solution x capable of minimizing
an objective without simultaneously increasing at least one of the others.

Other important concepts that will be frequently used in this work are Pareto
dominance and Pareto optimal set. For the Pareto dominance, a vector u =
(u1, . . . , uk) is said to dominate a vector v = (v1, . . . , vk) (denoted by u � v) if
and only if ∀i ∈ {1, . . . , k}, ui ≤ vi and ∃i ∈ {1, . . . , k} : ui < vi.

The Pareto optimal set for a multi-objective optimization problem f(x) is
given by ℘∗ := {x ∈ Ω | ¬∃ x′ ∈ Ω f(x′) � f(x)}, where Ω is the domain of x.

Therefore, the Pareto front (℘F ) for a given f(x) and ℘∗ is defined as ℘F :=
{u = f = (f1(x), . . . , fM (x)) | x ∈ ℘∗}.

4 The omni-aiNet Algorithm

The omni-aiNet algorithm works with a real-coded population of antibodies
that correspond to the candidate solutions for the optimization problem. The
concept of a population of antigens is not explicitly used, once only the affinity
measures (value of the objective functions being optimized) are available. The
omni-aiNet basically follows the same main steps of the opt-aiNet algorithm
[5], as can be seen in Figure 1. However, the essential aspects of each step are
different. Additionally, to increase the convergence capability of the algorithm,
it was added a variation mechanism known as Gene Duplication, which will be
described in Section 4.3.

The algorithm starts by randomly generating an initial population of size Ni

(Ni is defined by the user). Each individual generated is within the range of
the variables. After the creation of the initial population, the algorithm enters a
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Fig. 1. Main steps of omni-aiNet

loop where the stop criterion is the number of generations (also defined by the
user). Within this loop, the main steps of the algorithm are executed: Cloning,
Hypermutation, Selection and Gene Duplication. The suppression of individuals
and insertion of new randomly generated ones are made from Ngs to Ngs gen-
erations (Ngs is defined by the user). The value of Ngs should be greater than
one to give enough time for the algorithm to explore the vicinity of each solution
before the suppression of similar individuals.

The following Subsections will present a detailed description of the main steps
presented in Figure 1.

4.1 Cloning and Hypermutation

The first step of each generation of the algorithm is the cloning phase. In this
phase, for all individuals in the antibody population, Nc identical copies (clones)
are generated. The parameter Nc must be defined by the user. Then, this pop-
ulation of clones suffer a process of genetic variability known as hypermutation.

The hypermutation mechanism applies to each generated clone, a random
variation with rates inversely proportional to its affinity to the antigen (also
known as its fitness). In this algorithm, it was adopted the polynomial mutation
mechanism, where a new individual is given by c′ = c + γ × Δmax, with c
the parent individual, c′ the new clone, and Δmax the maximum shift that the
individual can suffer in direction γ without violating the domain of the variables.
The value of γ is given by:

γ =

{
(2u)

1
η+1 − 1, if u < 0.5

1 − [2(1 − u)]
1

η+1 , if u ≥ 0.5
(2)

where u is a random number with uniform distribution in [0, 1].
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Fig. 2. The influence of η over γ, as a function of u

The parameter η is responsible for the amplitude of the mutation and is
defined according to each individual (parent antibody) fitness. Several tests were
made and it was empirically defined that η ∈ [5, 20], which makes γ vary with u
(u is a random number) in the region between the two boundaries (dashed and
full curves) in Figure 2.

Since it is desired a mutation rate inversely proportional to the fitness, be-
fore the cloning process the population of antibodies is ranked and divided into
ordered classes (as will be explained in Subsection 4.2). The individuals of the
first class receive the value η = 20 (smaller variation), the individuals of the
last class receive η = 5 (greater variation) and the individuals of the remaining
classes receive η values equispaced in [5, 20], always giving higher values of η to
individuals in the best classes (better individuals).

4.2 Selection, Ranking and Grid Processes

After the cloning and hypermutation phases, the algorithm has now a population
of size N ′ = N + N × Nc (where N is the size of the original population and
Nc is the number of clones per individual). From this population, the N best
individuals should be selected to constitute the new antibody population. This
selection phase is described in Algorithm 1.

Algorithm 1. Pseudo-code for the selection phase.
[F1, F2, . . .] ← ranking(Pt); � Best class in F1 and so on.
Pt+1 ← ∅; � Initializing the new population
j ← 1;
while |Pt+1 Fj | ≤ N do

Pt+1 ← Pt+1 Fj ; � Inserts the j-th class in the population
j ← j + 1;

end while
L ← j; � Last class to be included (partially)
rem ← N − |Pt+1|; � Num. of individuals that still can be inserted in the pop.
Pg ← grid(FL,rem); � Selection of the remaining individuals
Pt+1 ← Pt+1 Pg;
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In the above pseudo-code, the first step is to rank the population of clones
and parents into ordered classes, according to the “quality” of each individual.
This measure of “quality” of each individual can be given by the concept of
constrained ε-dominance, originally proposed by [8].

The term ε-dominance is a modification of the concept of Pareto Dominance
presented in Section 3. A vector u = (u1, . . . , uk) is said to ε-dominate a vector
v = (v1, . . . , vk) if and only if ∀i ∈ {1, . . . , k}, ui ≤ vi and ∃i ∈ {1, . . . , k} :
ui < vi − εi. The parameter ε is calculated from a user-defined parameter δ as
in εi = δ× (maxV aluei −minV aluei), where maxV aluei is the maximum value
for coordinate i and minV aluei is the minimum value for coordinate i. In this
context, it is said that a solution i constrained ε-dominates a solution j if any of
the following conditions are true: (i) solution i is feasible and solution j is not
feasible; (ii) both solutions i and j are NOT feasible but solution i has a smaller
constraint violation than solution j; and (iii) both solutions i and j are feasible
and solution i ε-dominates solution j.

The constraint violation for a solution a is given by CV (a) =
∑J

j=1 γ(gj(a))+∑K
k=1 |hk(a)|, where hk(a) is the value of the k-th equality constraint for solution

a, gj(a) is the value of the j-th inequality constraint for solution a, γ(gj(a)) = 0
if gj(a) > 0 and γ(gj(a)) = |gj(a)| if gj(a) ≤ 0.

In this context, the ranking procedure divides the population allocating to
Class one the solutions in the population that are not constrained ε-dominated
by any other solution, to Class two the solutions constrained ε-dominated only
by the solutions in Class one, and so on. Given that the ranking is made over the
parents and mutated clones, and the best classes are defined first, the algorithm is
then capable of implementing an elitism within a single population, without the
need of an auxiliary population as many multi-objective optimization algorithms
do.

Frequently in the selection process, the number of individuals in the class
to be inserted into the population is greater than the remaining “vacancies”
(the number of individuals that are still allowed to enter the population). Under
these circumstances, the algorithm must find another way to select individuals
expressing the same performance according to the ranking mechanism. In omni-
aiNet, a grid procedure is proposed. This procedure selects Nr solutions from
a given class FL. To do so, it detects the kind of problem being optimized
(single or multi-objective) and works on each axis (dimension) of the variable
space (for single-objective problems) or of the objective space (for multi-objective
problems), selecting the Na = Nr/Naxis (where Naxis is the dimension of the
variable or objective space) more spaced solutions. For each axis, the procedure
finds the maximum and minimum solutions and divides the interval between
these extreme values into Na cells and selects the Na solutions closest to the
center of each cell. This procedure tries to keep the solutions spread in the
variable or objective space, therefore contributing to the diversity of solutions
in the population.
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4.3 Gene Duplication

Besides the polynomial hypermutation, the omni-aiNet algorithm also incorpo-
rates a second technique of genetic variation, known as Gene Duplication. This
mutation consists of the duplication of parts of the elements in the DNA chain
during the chromosome reading. According to Ohno [12] and Holland et al. [10],
this mutation has an important role in the evolution of species.

This mechanism has already been proposed by de França et al. [7] as a relevant
operator in dopt-aiNet. Basically, it randomly selects a coordinate i of the an-
tibody and replaces every element in the remaining coordinates by xi whenever
this replacement improves the performance of the antibody.

4.4 Suppression, Binary Tournament and Random Insertion

The main goal of the Suppression phase of the algorithm is to eliminate re-
dundancy among individuals in the population and to maintain diversity when
associated with the insertion of new randomly generated individuals in the pop-
ulation (Random Insertion).

In the Suppression phase, the Euclidean distance in the variable space among
every individual in the population is calculated and normalized with respect
to the maximum distance found so far. In this context, the individuals close
enough to each other according to a suppression threshold (defined by the user)
are subject to a Binary Tournament procedure and the worst one is eliminated
from the population.

This Binary Tournament follows basically the same criteria used in the ranking
procedure, which means that a given solution i is preferred to a solution j if (i)
i is feasible and j is not feasible; (ii) i has a smaller Constraint Violation than j
and both are not feasible; and (iii) both solutions are feasible and i ε-dominates
j. If both solutions are feasible and there is no ε-dominance among then, the
winner solution is randomly selected.

The Random Insertion is a mechanism that contributes to the diversity of
the population by inserting Nrand new individuals randomly generated into the
population (Nrand must also be defined by the user).

The Suppression and Random Insertion steps of the algorithm, together with
cloning and hypermutation phases, are also responsible for other important char-
acteristic of omni-aiNet: the dynamic variation of the population size. The algo-
rithm is then allowed to define a proper number of antibodies in the population
at each iteration, according to the specified suppression threshold.

5 Comparative Analysis

This section presents a brief conceptual and comparative analysis between omni-
aiNet and Deb and Tiwari’s omni-optimizer (DT omni-optimizer) [8]. Besides the
distinct bio-inspiration, the omni-aiNet and the DT omni-optimizer algorithms
present several conceptual differences that may lead each algorithm to perform
differently according to the characteristics of the problems being treated.
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The most evident difference between omni-aiNet and DT omni-optimizer is
that the latter works with a population of fixed size, while omni-aiNet can ad-
just the number of individuals according to each problem and to the suppression
threshold defined by the user. This characteristic gives more flexibility to the
search engine, once the algorithm automatically adjusts the number of individ-
uals, providing a better allocation of computational resources.

Although both algorithms use the polynomial mutation as one of the mech-
anisms of genetic variability, the probability of activation of this mechanism is
much smaller in the DT omni-optimizer than in omni-aiNet, once the latter
presents a polynomial hypermutation as its main mechanism of genetic vari-
ability. Also, omni-aiNet automatically determines the parameter η according
to the ranking of each individual, while in the DT algorithm this parameter is
defined by the user. The other mechanisms of genetic variability are also dif-
ferent in both algorithms: DT presents crossover between the individuals in the
population, while omni-aiNet presents gene duplication.

The last main difference between both algorithms is associated with the way
each omni-optimizer treats the diversity and spacing of solution in both variable
and objective spaces. While omni-aiNet presents the mechanisms of Suppression,
Random Insertion and Grid, described in Sections 4.2 to 4.4, the DT algorithm
uses a metric of Crowding Distance to select the individuals with greater dis-
tances from their neighbours in variable and objective space (further information
about this metric and procedure can be found in [8]).

Both algorithms present the same number of parameters to be adjusted by
the user: omni-aiNet demands the proper tuning of the size of initial population,
number of generations, number of generations between suppressions, number of
clones per individual, number of randomly generated individuals, suppression
threshold and δ; while the DT omni-optimizer requires the definition of the size
of initial population, number of generations, distribution index for crossover,
probability of crossover, distribution index for mutation, probability of mutation
and δ. More information about these parameters can be found in [8].

6 Experimental Results

This section presents the results of the preliminary experiments with the omni-
aiNet algorithm. Special attention will be devoted to multi-objective problems,
so that single objective instances (uni and multi-global) are incorporated only
to indicate the ability to perform omni-optimization.

For the multi-objective problems, the omni-aiNet algorithm was compared to
the original version of the omni-optimizer algorithm, proposed by Deb and Tiwari
[8] (DT omni-optimizer) and kindly provided by the authors, and the compar-
ative results are presented in Subsections 6.3 and 6.4. Once Deb and Tiwari’s
software package does not provide the number of fitness evaluations per itera-
tion, the comparison will be founded on the capability to reproduce the Pareto
front, and whenever an equivalence exists between parameters, they will receive
the same settings. For the non-equivalent parameters, the DT omni-optimizer
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was run with simulated binary crossover (with ηc = 20), polynomial mutation
(with ηm = 20), crossover probability of 0.8 and mutation probability of 1/n
(where n is the number of variables) for all problems. The population size and
number of iterations depends on the problem and will be given in what follows.
In all simulations in Subsections 6.3 and 6.4, omni-aiNet has always been run
with the number of generations and individuals in the initial population smaller
than or equal to the ones adopted for the DT omni-optimizer.

6.1 Single-Objective Uni-global Problem

The omni-aiNet algorithm was applied to the following single objective uni-global
constrained test problem:

Minimize f(x) = exp (x),
Subject to g(x) = exp (x) − 5 ≥ 0, (3)

0 ≤ x ≤ 3,

This problem has a single optima located at x = 1.609.The omni-aiNet could
successfully find this global solution. The simulation was made with the following
parameters: initial population of 20 individuals, 20 generations, 10 generations
between suppressions, 5 individuals in Random Insertion, a suppression thresh-
old of 0.01, 5 clones per individual and δ = 0.

The main aspect to be emphasized here is that the population converges to
a single individual (global solution), indicating that the algorithm is capable of
automatically adjusting the amount of computational resources to the kind of
problem being treated.

6.2 Single-Objective Multi-global Problems

In this section, two single-objective multi-global problems were considered. The
first problem is a single variable problem having 21 different global optimal
solutions and given by:

Minimize f(x) = sin2(πx), x ∈ [0, 20]. (4)

For this problem, eight simulations were made with an initial population of
60 individuals, for 50 generations (being 10 the number of generations between
suppressions), with 20 individuals in Random Insertion, a suppression threshold
of 0.01, 10 clones per individual and δ = 0.05. The final ε-nondominated solutions
for one of these simulations (24 solutions in the final population) are presented
in Figure 3-a. The omni-aiNet algorithm found an average of 19.75 ± 0.71 of
the 21 global optimal solutions of this problem, and kept in the final population
an average of 22.63 ± 1.93 individuals. The average number of individuals in
the final populations were higher than the average number of global solutions
found because some non-optimal individuals presented distances from the other
elements in the population greater than the defined suppression threshold, which
prevented their suppression.
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Fig. 3. The final ε-nondominated solutions for (a) f(x) = sin2(πx) and (b) Himmel-
blau’s function

The second problem is known as Himmelblau’s function and is given by:

Minimize f(x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2, −5 ≤ x1, x2 ≤ 5. (5)

For this problem, there are four minima, each having a functional value equal
to zero. As can be seen in Figure 3-b, the regions of these minima concentrated
the final solutions found by the algorithm (31 solutions). The parameters used
were 60 generations, 50 individuals in the initial population, 20 individuals in
Random Insertion, a suppression threshold of 0.005, 5 clones per individual and
δ = 0.05. During the execution of omni-aiNet, the population size decreased
with the convergence of the algorithm, finishing with 31 individuals (including
the four solutions) whose distance among each other is within the predefined
suppression threshold.

Again, the results presented in Figure 3 seems very promising, once for both
problems the algorithm was capable of identifying the global solutions with a
fine tuning of the population size according to the demand.

6.3 Multi-objective Uni-global Problems

Two problems were selected as test functions for the multi-objective uni-global
problem category: the 30-variable ZDT1 test function, that has a convex Pareto
Front and the 30-variable ZDT2 test function, that is the nonconvex counterpart
to ZDT1. The details of each problem can be found in [13]. Figures 4 and 5
present the true Pareto front (solid lines) and the Pareto front found by (a)
the omni-aiNet; and (b) DT omni-optimizer algorithm for problems ZDT1 and
ZDT2, respectively. The parameters used for omni-aiNet were 50 generations,
100 individuals in the initial population, 10 generations between suppressions, 5
individuals in Random Insertion, a suppression threshold of 0.001, 3 clones per
individual and δ = 0.01. For the DT omni-optimizer, it was used δ = 0.01, 100
generations and a population of 100 individuals.

As can be seen in Figures 4 and 5, for both problems the omni-aiNet produced
a final population of solutions much closer to the real Pareto front and with a
better coverage of this front than the DT omni-optimizer.
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Fig. 4. The final ε-nondominated solutions for ZDT1 problem, obtained by (a) omni-
aiNet (79 solutions) and (b) DT omni-optimizer.

Fig. 5. The final ε-nondominated solutions for ZDT2 problem, obtained by (a) omni-
aiNet (92 solutions) and (b) DT omni-optimizer

6.4 Multi-objective Multi-global Problem

The multi-objective multi-global problem used in this work was designed by Deb
and Tiwari in [8] and is given by:

Minimize f1(x) =
∑5

i=1 sin(πxi),

f2(x) =
∑5

i=1 cos(πxi), (6)
subject to 0 ≤ xi ≤ 6

Both objectives of this problem are periodic functions with period 2, such
that Pareto optimal solutions correspond to xi ∈ [2m + 1, 2m + 3/2], where
m is an integer. Figure 6 presents the ε-nondominated solutions obtained by
(a) omni-aiNet and (b) DT omni-optimizer. The omni-aiNet parameters were
100 generations, 400 individuals in the initial population, 3 generations between
suppressions, 200 individuals in Random Insertion, a suppression threshold of
0.006, 2 clones per individual and δ = 0.001. For this problem, the obtained
results for DT omni-optimizer were achieved with δ = 0.001, 100 generations
and a population of 400 individuals.
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Fig. 6. The final ε-nondominated solutions for the multi-objective multi-global prob-
lem, obtained by (a) omni-aiNet (212 solutions) and (b) DT omni-optimizer

As can be seen in Figure 6, the omni-aiNet had problems in covering the whole
Pareto front, specially in the region close to f1(x) = 0. Moreover, it can be said
that the DT omni-optimizer also presented a smoother coverage of the Pareto
front than the one presented by omni-aiNet, what can be assigned to its larger
final population.

Figure 7 presents the solutions obtained by the optimizers in the variable
space. This figure illustrates the multimodality of this problem, once distinct
points in the variable space can be mapped to the same point in the Pareto
front.

Fig. 7. Pareto optimal solutions with DT omni-optimizer (lower-left) and omni-aiNet
(upper-right). The axes in an (i, j)-plot correspond to variables xi and xj .

As can be seen, the DT omni-optimizer clearly overcomes the omni-aiNet
performance in finding the multiple global solutions of the problem. However, it
could be noticed during the execution of omni-aiNet, that the algorithm was ca-
pable of finding all the multiple global solutions of the problem but was unable to
keep them in the population until the end of its execution. These solutions were
discarded from the population specially due to intrinsic characteristics of the
Selection and Grid mechanisms. In the Selection phase, if a solution i in a region
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close to a global optima is slightly better than a solution j in the region close to
another global optima of the problem, the mutated clones of solution i tend to
be better than the mutated clones of solution j and sometimes even better than
solution j at all. Therefore, the solution i and probably the most of its mutated
clones are selected to continue in the population while solution j, that corre-
sponds to a different optima of the problem, may be discarded. Other important
aspect that lead to the above results is the fact that the Grid procedure analyzes
only the objective space in multi-objective problems to select the most spread
solutions, without considering any information of the spread of these solutions
in the variable space. The obtained results for the ZDT1 and ZDT2 problems
showed that this mechanism seems to be efficient in multi-objective uni-global
problems, but needs improvements to treat multi-objective multi-global opti-
mization problems.

7 Concluding Remarks

This work presented a new immune-inspired algorithm for omni-optimization,
called omni-aiNet, capable of solving single and multi-objective problems, with
a single or multiple global optimal solutions. The proposed algorithm unites the
concepts of omni-optimization proposed by Deb and Tiwari [8] to principles of
Artificial Immune Systems, giving to the algorithm the capabilities of dynami-
cally adjusting its population size and avoiding high levels of redundancy within
the population.

The omni-aiNet was applied to several optimization problems with distinct
characteristics and compared to the performance of the DT omni-optimizer algo-
rithm [8]. The obtained results showed that the proposed approach seems very
promising, once it was even capable of outperforming the DT omni-optimizer
for two of the problems treated in this work. However, further improvements are
still necessary to the omni-aiNet algorithm, specially to its diversity maintenance
mechanism when both the spaces of objectives and variables are considered.

For future work, besides the necessary improvements to the algorithm, a more
rigorous series of tests should also be made, covering a wider range of problems
and comparing the results not only to the Deb and Tiwari’s omni-optimizer,
but also to other well known state-of-the-art algorithms. Sensitivity analysis
should also be made to detect the impact of each input parameter on the overall
performance of the algorithm.
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Abstract. The management of complex energy systems where different
power sources are active in a time varying scenario of costs and prices
needs efficient optimization approaches. Usually the scheduling problem
is is formulated as a Mixed Integer Linear Programming (MILP) to guar-
antee the convergence to the global optimum. The goal of this work is
to propose and compare a hybrid technique based on Artificial Immune
System (AIS) and linear programming versus the traditional MILP ap-
proach. Different energy scheduling problem cases are analyzed and re-
sults of the two procedures are compared both in terms of accuracy of
results and convergence speed. The work shows that, on some technical
cases, AIS can efficiently tackle the energy scheduling problem in a time
varying scenario and that its performances can overcome those of MILP.
The obtained results are very promising and make the use of immune
based procedures available for real-time management of energy systems.

1 Introduction

Distributed energy generation systems are becoming more and more widespread
in the power grid. This increase is driven by the growing demand of energy
for industrial and civil purposes and by energy market deregulation. In this
way, the classic passive electric grid with few power plants is overcome by an
active network where dispersed nodes can generate power on their own and,
possibly, they offer power to the grid. This solution has many advantages, some
drawbacks and certainly it requires an accurate energy management. Design and
optimization of the energy local network is, in fact, quite different from the one
of the classical energy grid.

In particular, starting from the fact that loads very often requires both electric
and thermal power, the local system can be of Combined Heat and Power (CHP)
type. The combined production of electric and thermal energy leads to the use,
in a positive way, of the thermal energy usually wasted in the thermodynamic
cycle. This energy can be efficiently employed to satisfy the requirements of
thermal loads both domestic and or industrials. Since heat cannot be efficiently
transferred to far sites, its source must be located close to the load and thus

H. Bersini and J. Carneiro (Eds.): ICARIS 2006, LNCS 4163, pp. 309–320, 2006.
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also this characteristic requires that energy is produced in a distributed way
all over the network. The energy management of this system needs to take into
account local loads and generators, with different nominal powers, reliability and
pollution levels and the possible presence of energy storage units. In addition,
all these characteristics and requirements change with time: for instance load
profiles, price of energy bought from or sold to the electrical network etc.. An
accurate scheduling of the system must ensure the use of the most economical
power sources, fulfilling operational constraints and load demand.

The management of the energy system requires the definition of the on/off
status of the machines and the identification of their optimal production profile
of them. When the start-up/shut-down profile is set, the problem can be ap-
proached by means of Linear Programming (LP). The definition of the on/off
status of the sources is referred to as scheduling and it requires the introduc-
tion of logical variables, which define in each time interval (e.g. one hour, one
quarter of an hour etc.) the power source availability. As a consequence, the
complete problem must deal with both continuous (power levels) and integer
(on/off status) variables. This problem can be stated as a Mixed Integer Linear
Programming problem (MILP) [1]. Even if this approach guarantees to find out
the global minimum of the cost function, the use of MILP needs a branch and
bound, or similar approaches, whose computational cost is shown to exponen-
tially increase with the number of branches. Instead of a full LP approach, an
heuristic optimization algorithm can be used to define the on/off status of the
power sources, leaving to an inner LP module the optimization of a particular
configuration. An Artificial Immune System (AIS) algorithm can be efficiently
employed in this phase and its use is shown to be quite efficient if all operational
constraints are embedded inside the scheduling interval definition [2].

In this paper, a comparison of the two techniques, MILP and AIS-LP is pre-
sented, both approaches are described and comparisons are carried out in terms
of results accuracy and convergence speed to the optimum.

2 Definition of Energy Management Problem

The outline of the system under study is represented in Fig. 1, where:

– Pe is the electrical power produced by the CHP;
– Pt is the thermal power produced by the CHP;
– Bt is the heat produced by a boiler which fulfills the thermal load when

production of electric power is neither needed nor economically convenient;
– Dt is the heat produced in the thermodynamic cycle which is not used by

the thermal load and it is thus released into the atmosphere;
– Pp and Ps are the electrical power purchased from or sold to the external

network respectively;
– St is the stored thermal energy;
– Ue and Ut are the electrical and thermal power required by the load;
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Fig. 1. Structure of a CHP. Straight lines: electrical power fluxes, dotted lines: thermal
power fluxes.

In each time interval (i), thermal and electrical power of a CHP are linked by a
linear relation

Pt(i) = ktPe(i) (1)

The energy management problem of the CHP system regards the definition
of the best arrangement of production levels of the power unit to minimize the
management costs and fulfilling all loads requirements. The problem is defined
over a scheduling period (e.g. one day, one week etc.) where loads, costs, fares
etc. can change. The scheduling period is subdivided in Nintervals time intervals
of length Δt. During each interval all CHP characteristics and load data are
assumed to be constant.

Besides plant data, some operational constraints have to be imposed on the
power source like:

– Minimum On Time (MOT): minimum time interval during which CHP must
be on when it is switched on;

– Minimum Shut-down time (MST): minimum time interval which CHP must
be off since it was turned off;

– Maximum ramp rate: maximum power rate of the source

The unit production costs of the node, expressed in AC/kWh, are:

– ce: cost coefficient of electric energy produced by the CHP;
– ct: cost coefficient of thermal energy produced by the boiler;
– cp(i), cs(i): prices of purchased and sold energy at i-th time interval.

By using the previous definitions it is possible to write a global cost function (in
AC) over the scheduling period

fCHP =
Nintervals∑

i=1

[cePe(i) + cp(i)Pp(i) − cs(i)Ps(i) + ctBt(i)] Δt (2)
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The optimization problem can be stated as

minimize fCHP (3)

subject to operational constraints

1. electrical balance: Pe(i) + Pp(i) − Ps(i) = Ue(i);

2. thermal balance: Pt(i) + Bt(i) − Dt(i) +
St(i − 1) − St(i)

Δt
= Ut(i);

3. dissipation of thermal power produced by CHP: Dt(i) − Pt(i) ≤ 0;
4. thermal and electrical CHP characteristic (1): ktPe(i) − Pt(i) = 0;
5. MOT, MST and ramp limit satisfaction.

Variables are bounded by their upper and lower bounds

Pmin
e ≤ Pe(i) ≤ Pmax

e

0 ≤ Bt(i) ≤ Bmax
t

0 ≤ Ps(i)
0 ≤ Pp(i)
0 ≤ Dt(i)
0 ≤ St(i) ≤ Smax

t

(4)

The first bounds do not hold during the starting-up and shutting-down phases.

3 Mixed Integer Scheduling Approach

The scheduling problem can be directly formulated as a MILP [1,3]. This means
that the problem is still linear, but it has both continuous and integer vari-
ables. This class of problems can be solved by exact methods like Branch and
Bound technique [4]. The MILP approach requires to define the on/off status of
the CHP as a logical variable δ(i) defined for all i-th time interval. Moreover,
two additional sets of logical variables must be considered to take into account
MOT/MST constraints and up/down ramps [5] (see Fig. 2)

y(i) =
{

1 if CHP turns on at i − th time interval
0 otherwise (5)

z(i) =
{

1 if CHP turns off at i − th time interval
0 otherwise (6)

The complexity of the problem hardly depends on time discretization, because
the finer the discretization the higher the number of integer variables. Besides,
the model of ramp limits, MOT and MST limits introduce several additional
constraints which must be explicitly added to the model. In [5] it is shown that
it is possible to model start-up and shut-down power trajectories with eleven
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Fig. 2. Binary variables of MILP approach

constraints. Finally, it is common to define an upper limit to the number of
turns on and off during the scheduling period Non = Noff = Nchange.

NI∑
i=0

y(i) ≤ Nchange

NI∑
i=0

z(i) ≤ Nchange

(7)

For instance, for a one-day scheduling period with the CHP in one day, and
Non = Noff = 1, this means that CHP can be turned on and off just once.

4 Immune Scheduling Approach

The second approach is based on the opt-aiNet version [6] of the clonal selec-
tion algorithm. The optimization procedure (AIS-LP) is divided into two nested
stages: the inner one is the LP problem derived in Section 2 which defines the
optimal production levels at each time interval once the on/off profiles are de-
fined. The outer stage is responsible defining the on/off status of the generation
units.

It is useful to use as degrees of freedom of the optimization the time ampli-
tudes of the on and off intervals τj of the CHP (Fig. 3). These values are treated
as integer variables representing the number of on and off intervals of each con-
trol period. The variables are then decoded in terms of 0-1 strings representing,
for each utility, its on/off status. This assumption drastically simplify the op-
timization search. The number of available solutions is in fact equal to MN ,
where N is the number of degrees of freedom and M the number of possible val-
ues assumed by each variable. A fine discretization does not affect the number
of variables but only their range of values M , thus the overall complexity of the
problem is polynomial. With a MILP approach, M is always equal to 2, because
the problem is modeled by binary variables. The time discretization affects the
value of N , giving rise to an exponential complexity of the problem. Moreover,
in AIS-LP approach, the value of M is restricted when including MOT/MST
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constraints. Thus the modeling of technical constraints reduces the search space
allowing a faster convergence to the optimal solution. Table 1 The definition of

Table 1. Number of available configurations for two time discretizations

Δt = 1 hour Δt = 0.25 hour
MILP AIS-LP MILP AIS-LP

M 2 24 2 96
N 24 2 96 2

MN 16.8 × 106 576 79.2 × 1027 9216

on/off intervals τ as optimization variables requires an algorithm without com-
plex operators. This consideration is due to the fact that it is not easy to keep
the feasibility of solutions. Thus algorithms with crossover and recombination
operators, like Genetic Algorithm and Evolution Strategy must be excluded a
priori. The AIS has the advantage of using the mutation operator only, and its
memory capability will be exploited in a future work to handle the time varying
scenarios in real time optimization. The AIS-LP performances can be enhanced

Fig. 3. Representation of the variables for the AIS-LP approach: intervals τj

by using problem-specific information:

– creation of feasible initial population which satisfies the equality constraints∑
i

τi = Nintervals − NonMOT − NoffMST = Nfree (8)

– modified mutation operator to generate of feasible-only clones.

For these reasons some immune operators must be customized to solve the spe-
cific problem. In particular the mutation operator is not related to the actual
fitness of the parent cell. Algorithms 1 and 2 report the pseudocodes of the
generator of new cells and mutation operator, respectively.

The use of problem-specific information drastically decreases the dimension
of the search space [2], making the AIS-LP approach more suited for high di-
mensional or fine discretized problems [7].



Immune Procedure for Optimal Scheduling of Complex Energy Systems 315

Algorithm 1. New cells generation
1: for all newcells do
2: sum ← 0
3: for i ← 1, Nintervals do � Random initialization
4: cell(i) ← random()
5: sum = sum + cell(i)
6: end for
7: for i ← 1, Nintervals do � Normalization and interization
8: cell(i) ← INT(Nfree × cell(i)/sum)
9: end for

10: end for

Algorithm 2. Mutation
1: for all clones do
2: for i ← 1, Nintervals do
3: mutaz(i) ← random()
4: if 0 ≤ mutaz(i) ≤ 1/3 then mutaz(i) ← −1
5: if 1/3 ≤ mutaz(i) ≤ 2/3 then mutaz(i) ← 1
6: if 2/3 ≤ mutaz(i) ≤ 1 then mutaz(i) ← 0
7: end for
8: for i ← 1, Nintervals do
9: clone(i) = parent(i) + mutaz(i) − mutaz(i − 1) � Feasible mutation

10: if clone(i) ≤ xlow(i) then � Fix mutation to the lower bound
11: clone(i) ← xlow(i)
12: mutaz(i) ← 0
13: end if
14: if clone(i) ≥ xup(i) then � Fix mutation to the upper bound
15: clone(i) ← xup(i)
16: mutaz(i) ← 0
17: end if
18: end for
19: end for

5 Proof of Principle Test Case

MILP and AIS-LP are tested on a simple but effective energy management prob-
lem. The structure of the CHP node is the one of Fig. 1; the operational data
of the devices are reported in Table 2. The thermal storage unit is considered to
have a maximum capacity of 300 kWh. Energy price profiles are shown in Fig. 4.
Several scheduling instances are solved with a quarter of hour time sampling
(Δt = 0.25 hours), thus a one day scheduling period has Nintervals = 96, two
days scheduling Nintervals = 192 etc. Results are compared in terms of conver-
gence time and number of objective function calls. It must be remarked that a
comparison in terms of the mere number of objective function calls can be mis-
leading because the linear problem solved by MILP and AIS-LP are different.
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Table 2. Main operational data used in the test case

Pmin
e Pmax

e MOT MST Ramp limit
kW kW hour hour kW

h
CHP 200 600 5 4 170
Boiler 0 800 none none none

Fig. 4. Profile of costs purchased (cp) and sold (cs) electrical power

These differences can be explained by noting that the number of variables, num-
ber of constraints and number of non zero elements in coefficients matrix are
not the same for two formulations. The main differences in the LP formula-
tion between AIS-LP and MILP are summarized in Table 3. The larger MILP

Table 3. Comparison of dimensions of different LP problems (NMOT: number of min-
imum on time intervals, NMST: number of minimum shutdown time intervals, Nup:
number of time intervals needed to reach, Pmin

e during start-up phases, Ndw: number
of time intervals needed to reach zero power during shut-down phases)

AIS-LP MILP
nr. of constraints 6Nintervals 21Nintervals + 2
nr. of variables 7Nintervals 10Nintervals

matrix elements 35N2
intervals 210N2

intervals

non zeros 14Nintervals (48 + NMOT + NMST + 8Ndw + 8Nup)Nintervals

model is due to the fact that operational constraints (ramp limits and MOT
and MST constraints) have to be taken into account directly in the linear model
whereas AIS-LP approach manage these limits in the external loop, as described
in Section 4.
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The parameter setting of AIS-LP is:

– population cardinality: 10;
– number of clones: 5;
– number of inner iterations: 5;
– convergence criterion: the search ends if the objective function value does

not improve for more than ten external generations.

Results are averaged on 10 independent runs to take into account the statistical
variation of performances due to the stochastic nature of the algorithm.

6 Discussion

In Fig. 5 MILP and AIS-LP are compared with respect to the computational
time (in seconds) to converge to the optimal value on a Pentium IV 2.8 GHz.
These data are displayed versus dimension of problem, represented by the value
of Nintervals.

Fig. 5 shows two important properties. Firstly, there is a crossover between
the two curves of MILP and AIS-LP. This fact leads to the consideration that the
computational time of MILP approach becomes impracticable for large instances,
i.e. for fine discretization and/or long period managements.

Secondly, by analyzing each curve, it is possible to find that MILP has an
exponential dependence of the computational time on the cardinality of the
problem, while AIS-LP has a quadratic rule. The previous considerations are
confirmed by the analysis of Fig. 6 which shows the number of LP problems
solved by the two techniques. In this case the number of LP problem is linearly
dependent on the cardinality of the problem. It is also worth noting that the
solutions found by AIS-LP and MILP models share the same objective function

Fig. 5. Computational time of the two procedures vs number of time intervals. AIS-LP
computational time has a quadratic dependence on the cardinality of the problem.
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Fig. 6. Number of objective function calls of the two procedures vs number of time
intervals. The number of LP problems solved by AIS-LP is linearly dependent on time
discretization.

Fig. 7. One day electrical power profiles

values, or are slightly different. This fact shows that AIS-LP procedure converges
to the exact solution.

Figs. 7, 8 and 9 show the electrical and thermal power and energy storage
profiles of a one day scheduling.

The following remarks can be made:

a) the CHP starts early in the morning in order to store heat energy and satisfy
the first thermal load peak of the day. Excess electrical power is sold to the
external network;
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Fig. 8. One day thermal power profiles

Fig. 9. One day thermal storage energy profile

b) the electrical load is always supplied by the CHP except for few time inter-
vals; by looking at Fig. 8 it is possible to note that CHP production never
follows thermal load. This fact is explained by the role of thermal storage;

c) the boiler is requested to produce thermal power only during night hours,
when the CHP electrical production is neither needed nor economical;

d) during night hours, thermal storage reaches its upper limit for some time
intervals. This fact means that the possibility of storing more thermal energy
would be useful to reduce costs.

The effectiveness of the optimal scheduling is evidenced by referring the op-
timal objective function to the cost of a non cogenerative system, where the
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electrical load is supplied by the external network and the thermal power is
produced by the boiler only. In this case

fnoncogenerative =
Nintervals∑

i=1

[cp(i)Ue(i) + ctUt(i)] Δt (9)

f% =
fCHP

fnoncogenerative
100. (10)

The one day scheduling allows to save money of about 34% (f% = 66%).
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Abstract. Multiple sequence alignment (MSA) is one of the most im-
portant tasks in biological sequence analysis. This paper will primarily
focus on on protein alignments, but most of the discussion and method-
ology also applies to DNA alignments. A novel hybrid clonal selection al-
gorihm, called an aligner, is presented. It searches for a set of alignments
amongst the population of candidate alignments by optimizing the classi-
cal weighted sum of pairs objective function. Benchmarks from BaliBASE
library (v.1.0 and v.2.0) are used to validate the algorithm. Experimental
results of BaliBASE v.1.0 benchmarks show that the proposed algorithm
is superior to PRRP, ClustalX, SAGA, DIALIGN,PIMA, MULTIALIGN,
and PILEUP8. On BaliBASE v.2.0 benchmarks the algorithm shows in-
teresting results in terms of SP score with respect to established and
leading methods, i.e. ClustalW, T-Coffee, MUSCLE, PRALINE, Prob-
Cons, and Spem.

Keywords: bioinformatics, multiple sequence alignment, protein sequ-
ences, immune algorithms, clonal selection algorithms, hypermutation
operator.

1 Introduction

Proteomics Multiple Sequence Alignment (MSA) plays a central role in molecular
biology, as it can reveal the constraints imposed by structure and function on
the evolution of whole protein families [1]. MSA has been used for building
phylogenetic trees, identification of conserved motifs, and predicting secondary
and tertiary structures for RNA and proteins [2].
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In order to be able to align a set of bio-sequences a reliable objective function
able to measure an alignment in terms of its biological plausibility through an
analytical or computational function is needed. Alignment quality is often the
limiting factor in the analysis of biological sequences — defining an appropri-
ate and efficient objective function can remove this limitation. It is an active
research field [3]. A simple objective function to optimize is the weighted sums-
of-pairs (SP) with affine gap penalties [4], where each sequence receives a weight
proportional to the amount of independent information it contains [5] and the
cost of the multiple alignment is equal to the sum of the cost of all the weighted
pairwise substitutions.

This research paper proposes a Hybrid Clonal Selection Algorithm (CSA)
which incorporates specific perturbation operators for MSA of amino-acids se-
quences. The obtained results show that the proposed Immune Algorithm is
comparable to state-of-art algorithms.

2 The Multiple Sequence Alignment Problem

To determine if two biological sequences have common sub-sequences is the most
popular sequence analysis problem. As described in [2] there are four fundamen-
tal topics: (1.) what kinds of alignment should be considered; (2.) the scoring
function adopted to evaluate alignments; (3.) the alignment algorithm designed
to find optimal (or suboptimal) scoring alignments; (4.) the statistical meth-
ods used to assess the significance of an alignment score. This paper focuses on
the key issues of design and efficient implementation of alignment algorithms
of finding optimal and suboptimal alignments of protein structures — but the
technique is also applicable to DNA alignments.

Definition 1 [Sequence Alignment]. Let S = {S1, S2, . . . , Sn} be a set of n
sequences (strings) over a finite alphabet Σ, each sequence Si consisting of �i

ordered characters si,j :

Si = si,1si,2 . . . si,	i , ∀i = 1, 2, . . . , n

Let Σ̂ a new alphabet: Σ̂ = Σ ∪ {−} by adding the symbol dash ’-’ to represent
gaps.

Then a set Ŝ = {Ŝ1, Ŝ2, . . . , Ŝn} of sequences over the alphabet Σ̂ is called a
sequence alignment of the set of sequence S, if the following properties are
fulfilled:

1. All strings in Ŝ have the same length �̂ with

max
i=1...n

(�i) ≤ �̂ ≤
n∑

i=1

�i.

Ŝ can be interpreted as n × �̂ matrix where the i−th row contains string Ŝi.
2. Ignoring gaps, sequence Ŝi is identical with sequence Si, ∀i = 1, 2, . . . , n.
3. Ŝ has no columns that contains gaps only.
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When n = 2 a pairwise sequence alignment is found, with n ≥ 3 multiple sequence
alignment. Solving the sequence alignment problem requires a scoring function
to evaluate alignments. A simple scoring function is a distance function (another
scoring function is the similarity approach). Having a distance function d(Ŝi, Ŝj)
for any aligned sequences Ŝi and Ŝj, the pairwise alignment problem can be
stated as follows:

Definition 2 [Pairwise alignment problem]. Let S = {S1, S2} be a set of 2
sequences over the alphabet Σ. Compute the alignment Ŝ = {Ŝ1, Ŝ2} of S over
the alphabet Σ̂ that minimises the distance d(Ŝ1, Ŝ2).

Hence, the multiple sequence alignment problem can be stated as follows:

Definition 3 [Sum-of-pairs multiple alignment problem]
Let S = {S1, S2, . . . Sn} be a set of n sequences over the alphabet Σ. Compute
the alignment Ŝ = {Ŝ1, Ŝ2, . . . , Ŝn} of S over the alphabet Σ̂ that minimises the
sum of the distance over all pairs Ŝi, and Ŝj :

min
Ŝ

=
( n−1∑

i=1

n∑
j=i+1

d(Ŝi, Ŝj)
)

The scoring functions previously defined are too simple to be used when aligning
real biological sequences. A scoring function needs to be based on the similarity
of the characters occurring in the sequences, e.g. amino-acids. For instance, for
two amino-acids, aai and aaj , we need a measure of the probability that they
have a common ancestor, or that one aa is the result of one or several mutations
of the other. This measure can be formulated as follows:

Definition 4 [Scoring matrix]. Let M be a � × � scoring matrix, where � is
the cardinality of the alphabet Σ, which for any two characters a and b of the
alphabet Σ has the following properties:

1. M(a, b) = M(b, a), ∀a, b ∈ Σ,
2. M(a,−) = GEP, where GEP is a fixed gap penalty,
3. M(−,−) = 0.

In general a gap of lenght h has a penalty score of h×GEP, where GEP < 0 is
the fixed gap (extension) penalty. This is called the linear gap penalty function.
From a biological point of view a more appropriate penalty score is the affine gap
penalty function, (AGPS): given an aligned sequence Ŝi, the first gap receives a
gap opening penalty, GOP < GEP < 0, which is stronger than penalty for gap
extending spaces. Hence, a gap of lenght h has a cost of GOP +(h−1)GEP. The
most common scoring matrices are the PAM and BLOSUM series. These scoring
matrices have been developed based on observed mutations in the nature. In
order to minimise redundant information, based on the relatedness of the given
sequences, each sequence usually receives a weight proportional to the amount
of independent information it contains. This kind of information can be derived
from a phylogenetic tree for the sequences.
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Definition 5 [Weighted symbol score]. Let W be such a weight matrix for
every pair of aligned sequences. Then the weighted symbol score for the aligned
sequences Ŝi Ŝj is defined as:

WSS(Ŝi, Ŝj) = Wij

	̂∑
k=1

M(ŝi,k, ŝj,k)

Sequence weights can be determined by constructing a guide tree from known
sequences — this is the approach used in this paper. These definitions lead to
the most common faced sum-of-pairs multiple alignment problem: optimizing a
weighted sum-of-pairs function with affine gap penalties.

Definition 6 [Sum-of-pairs multiple alignment problem]
Let S = {S1, S2, . . . , Sn} be a set of n sequences over the alphabet Σ. Compute
the alignment Ŝ = {Ŝ1, Ŝ2, . . . , Ŝn} of S over the alphabet Σ̂ that maximises the
weighted symbol score and the affine gap penalty score for all aligned sequences Ŝi :

max
Ŝ

(
n−1∑
i=1

n∑
j=i+1

WSS(Ŝi, Ŝj) +
n∑

i=1

AGPS(Ŝi)

)
(1)

For multiple protein sequence alignment, the weighted sum-of-pairs with affine
gap penalties is a popular objective function included in many MSA packages.
The problem of finding the multiple alignment was investigated in [6] and [7], and
proved to be a NP-hard problem. However, the results presented in [7] was proved
using a not metric scoring matrix (zero distance between two identical residues),
which is different from the actual scoring matrices used in multiple alignments.
Therefore, in [6], the authors improved the previous investigation using a fixed
metric score matrix through a reduction from the Minimum Vertex Cover, a
classical NP complete problem [8]. Multiple sequence alignment (MSA) decision
problems can be formulated as: given a set S = {S1, . . . , Sn} of sequences, a
sum-of-pairs objective function, and an integer C. MSA checks for alignments of
S, which have value C or less.

3 Hybrid Clonal Selection Algorithm

This work presents a Clonal Selection Algorithm (CSA) [30] with new hypermu-
tation operators for solving the multiple sequence alignment problem. CSAs are
a special class of Immune algorithms (IAs) inspired by the human Clonal Se-
lection Principle [31]. They are effective methods for search and optimization in
real-world applications. The algorithm is population based where each individ-
ual of the population is a candidate solution belonging to the fitness landscape
of a given computational problem. It uses two different methodologies to create
the initial population, as well as new hypermutation operators which insert or
remove gaps in the sequences.

Gap columns which have been matched are moved to the end of the sequence.
Next the remaining elements (amino acids in this work) and existing gaps are
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shifted into the freed space. The designed CSA considers only two immunolog-
ical entities: antigens (Ags) and B cells. The Ag is the problem to solve, i.e. a
given MSA instance, and B cells are the candidate solutions, i.e. a set of align-
ments, that have solved (or approximated) the initial problem [32,33]. Tackling
the multiple sequence alignment problem Ags and B cells are represented by a
sequences matrix.

Let Σ = {A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V } be the al-
phabet, where each symbol represents twenty amino acids and let S = {S1, S2,
. . . , Sn} be the set of n ≥ 2 sequences with length {�1, �2, . . . , �n}, such that Si ∈
Σ∗. Therefore, an Ag is represented by a matrix of n rows and max{�1, . . . , �n}
columns, whereas for the B cells a (n × �) matrix was used, with � = (3

2 ·
max{�1, . . . , �n}). These values where taken from experimental the proposed al-
gorithm was able to develop more compact alignments. In particular, for the B
cells a binary matrix was used, where s

′
i,j = 0 refers to a gap in the alignment

and s
′
i,j = 1 to a residue with 1 ≤ i ≤ n and 1 ≤ j ≤ �.

A Initialize the Population

Two different strategies were used to create the initial population (t = 0) of
candidate alignments. The first strategy, random initialization, is based on the
use of random “offsets” to shift the initial sequences in the following way: an
offset is randomly chosen in the range [0, (�− �i)] by a uniform distribution and
then the sequence Si is shifted from an offset positions towards the right side of
the row i, of the current B cell.

A second way to initialize the population was analyized, seeding the initial
population with CLUSTALW and CLUSTALW-seeding. However, a percentage
of the population was initialized using the offsets strategy described above to
avoid the algorithm getting trapped in a local optima. Hence, the second strategy
creates a percentage of initial alignments using CLUSTALW and the remaining
alignments are determined by a random offsets creation.

Preliminary experimental results show that the proposed algorithm achieves
better performance using the second strategy. Therefore, all results shown in
this paper were obtained using a combination of the two previously introduced
strategies (80% of B cell population by CLUSTALW seeding and 20% of B cell
population by random initialization using the random offsets).

The presented hybrid IA incorporates the classical static cloning operator,
which clones each B cell dup times producing an intermediate population P

(clo)
Nc

of Nc = d × dup B cells, where d is the population size).
The basic mutation processes which are considered in pairwise alignment and

multiple sequence alignments are: substitutions which change sequences of amino
acids, as well as insertions and deletions which add or remove amino acids and/or
gaps. In a first version of the algorithm the classical hypermutation and hyper-
macromutation operators where used: first operator flips a bit, using a number of
mutations inversely proportional to the fitness function value [34], whereas the
hypermacromutation simply swaps two randomly choosen subsequences. How-
ever, the first experiments produced non optimal alignments obtained, leading
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Table 1. Pseudo-code of the proposed hybrid immune algorithm for the MSA

Hybrid Immune Algorithm(d, dup, τB, Tmax)
1. t ← 0;
2. FFE ← 0;
3. Nc ← d × dup;
4. P

(t)
d ← Initialize Population(d);

5. Strip Gaps(P (t)
d );

6. Evaluate(P (t)
d );

7. FFE ← FFE + d;
8. while (FFE < Tmax)do
9. P

(clo)
Nc

← Cloning (P (t)
d , dup);

10. P
(gap)
Nc

← Gap operators (P (clo)
d );

11. Strip Gaps(P (gap)
Nc

);
12. Evaluate(P (gap)

Nc
);

13. FFE ← FFE + Nc;
14. P

(block)
Nc

← BlockShuffling operators (P (clo)
d );

15. Compute Weights();
16. Normalize Weights();
17. Strip Gaps(P (block)

Nc
);

18. Evaluate(P (block)
Nc

);
19. FFE ← FFE + Nc;
20. (aP

(t)
d , aP

(gap)
Nc

, aP
(block)
Nc

) = Elitist-Aging(P (t)
d , P

(gap)
Nc

, P
(block)
Nc

, τB);
21. P

(t+1)
d ← (μ + λ)-Selection(aP

(t)
d ,a P

(gap)
Nc

,a P
(block)
Nc

);
22. t ← t + 1;
23. end while

to frequent premature convergence to the local optimal during the convergence
process. Therefore, we have developed new hypermutation operators, specific to
the multiple sequence alignments, which insert or remove gaps in the sequences
— called GAP operator or BlockShuffling operator.

B GAP Operator

This operator acts on the cloned B cells generating a new population P
(gap)
Nc

.
It is based on two procedures, one inserts (InsGap), and the other removes
(RemGap) adjacent sequences of gaps. Initially, the GAP operator chooses what
procedure to apply using a random uniform distribution, i.e. if a number of
adjacent gaps needs to be inserted into the sequences or removed. Then a number
k, in the range [1, θ], of (adjacent) gaps is randomly choosen, where θ represents
a percentage of the alignments length. After several experiments setting θ = 2%
was obtained.

The InsGap procedure can be summarize in the following steps: split the
n sequences in z groups. During the experimental tests, z = 2 has been the best
setting for the performances of the proposed algorithm. Hence, we can rephrase



Aligning Multiple Protein Sequences by Hybrid Clonal Selection Algorithm 327

this step as follows: randomly choose a value m ∈ [1, n[, and split the n sequences
into two groups: 1st group from 1 to m sequences, and 2nd group from (m + 1)
to n; randomly choose two integer values x and y, in such way that k adjacent
gaps are insterted beginning from column x for the first group, and from column
y for the second group; randomly choose a subsequence shift direction D, either
left or right; finally, to insert the k adjacent gaps in the relative positions for
each sequence, and shift the subsequence to the D direction. During the shifting
phase, it is possible to miss n ≥ 0 bits with value 1; in this case, InsGap will
select n bits with value 0, different from the k gaps inserted, and they will be
flipped to 1, rebuilding the correct sequence. Figure 1, plot (a), shows an example
of how the InsGap procedure works, with k = 3, m = 2 and right shift direction.

Fig. 1. GAP operator has the purpose to insert, by InsGap procedure (a), or remove,
by RemGap procedure (b), adjacent gaps into the proposed alignment

RemGap procedure, simply, remove k adjacent gaps, and move the sub-
sequences towards a randomly chosen direction, either left or right. Plot (b) of
figure 1 shows an example of such an operator.

C BlockShuffling Operator

The second perturbation operator is the BlockShuffling operator, which
is based on the block definition. This operator moves aligned blocks left or right:
a block is selected in each alignment starting from a random point in a se-
quence.Three different approaches where developed: BlockMove moves whole
blocks either to the left or to the right; BlockSplitHor divides the blocks in
two levels, upper and lower, and shifting only one level, randomly chosen; and
BlockSplitVer, which randomly choose a column in the block which divides
it into two sides (left and right), and shifting only one side, randomly chosen as
well. Figure 2 summarizes the three operators.

Finally, the function Strip Gaps(P (∗)) moves matched gap columns to the
right end side of the matrix. This function is always applied before the fitness
function is evaluated.
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Fig. 2. BlockShuffling operator has the purpose to shifting blocks of amino acids
or gaps. Upper plot shows the BlockMove operator; middle plot drawing how Block-
SplitHor works, choosing the 4th row to divide the block in two level; lower plot shows
BlockSplitVer operator performing a right shift.

Evaluate(P ) computes the sum-of-pairs objective function of each B cell in
the population P , i.e. the proposed alignment quality, using the equation 1.

The aging operator, used by the algorithm eliminates old B cells in the pop-
ulations P

(t)
d , P

(gap)
Nc

and P
(block)
Nc

, whilst maintaining high diversity in order to
avoid premature convergence. The maximum number of generations a B cell can
remain in the population is determined by the parameter τB :. When a B cell
reaches τB + 1 it is erased from the current population, even if it is a good can-
didate solution. The only exception is made for the best B cell present in the
current population: (Elitist-Aging).

A new generation P
(t+1)
d of d B cells is obtained by selecting the ”survivors”

after the aging operator was applied to the populations — the resulting pop-
ulations are: aP

(t)
d , aP

(gap)
Nc

and aP
(block)
Nc

. The (μ + λ)-selection operator (with
μ = d and λ = 2Nc) reduces an offspring B cell population of size λ ≥ μ to a new
parent population of size μ. Such a selection operator guarantees monotonicity
in the evolution dynamics.

Finally, Tmax is the maximum number of fitness function evaluations and the
termination criterion.

Table 1 shows the pseudo-code of the described hybrid immune algorithm.
The functions Compute Weights() and Normalize Weights() compute and
normalize the weights of the sequences using a rooted tree, which is used for the
evaluation of the objective function.
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4 The State-of-Art Methods for MSA

The most popular method to solve MSA is based on Dynamic Programming (DP)
[9], which guarantees a mathematically optimal alignment. However, the method
is limited to a small number of short sequences, since the size of the problem
space increases with the number of sequences and their length. To overcome this
problem several heuristic approaches, based on different strategies, have been
developed to effectively deal with the computational complexity of the problem.

All current methodologies of multiple alignment are heuristics and can be
classify in three main categories: progressive alignments, exact algorithms and
iterative alignments.

Progressive Alignments. In progressive alignment methods multiple alignments
are performed, first aligning the closest sequences and then the more distant
ones are added. Although this approach has the advantage of being simplistic
and very fast, it does not guarantee any level of optimization.

Therefore, the main drawback of this approach is that once a sequence
has been aligned it cannot be modified, causing possible conflicts with suc-
cessively added sequences. Alignment programs based on this approach are
MULTALIGN [10], PILEUP [11], CLUSTALX [12], CLUSTALW [13], T-
COFFEE [14]. Their strategy is to align sequences in a progressive manner us-
ing a consistency-based objective function in order to minimize possible errors.
SPEM (sequence and Secondary-structure Profiles Enhanced Multiple align-
ment) [15] combines a sequence-based method with a consistency-based refine-
ment for pairwise alignment, a progressive algorithm for multiple alignment and
PROBCONS [16] a practical tool for progressive protein multiple sequence
alignment based on probabilistic consistency which is a novel scoring function
for measuring alignment quality.

Exact algorithms. In contrast to the previous approach, PIMA [17] uses local
dynamic programming to align only the most conserved motifs. In the default
setting it makes use of two alignment methods, maximum linkage and sequen-
tial branching, to decide the order of alignments ML PIMA and SB PIMA
respectively. Exact algorithms were developed to align multiple sequences simul-
taneously [18]. High memory requirement, high computational effort and limi-
tation on the number of sequences limit their usage. A new divide and conquer
algorithm [19] extending their capabilities was developed.

Iterative alignments. Iterative alignment methods depend on algorithms able
to produce an alignment and to refine it through a series of iterations until
no further improvements can be made. They are based on the idea that the
solution to a given problem can be computed by modifying an already existing
sub-optimal solution. Aligners which are based on this approach are:

– DIALIGN [20,21], a consistency-based algorithm which attempts to use lo-
cal information in order to guide a global alignment, i.e. to construct multiple
alignments based on segment-to-segment comparisons — such segments are
incorporated into a multiple alignment using an iterative procedure.
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– PRRP [22] optimizes a progressive global alignment by iteratively dividing
the sequences into two groups which are realigned using a global group-to-
group alignment algorithm.

– HMMT [23] is based on Hidden Markov Model (HMM), using simulated
annealing (SA) to maximize the probability that a HMM represents the
sequences to be aligned.

– MUSCLE (multiple sequence comparison by log-expectation) [24] is based
on similar strategies used by PRRP.

– SAGA (Sequence Alignment by Genetic Algorithm) [25] is a genetic algo-
rithm based on COFFEE (Consistency Objective Function For alignmEnt
Evaluation) objective function [26]. The model described in SAGA has re-
ceived considerable interest in the evolutionary computation community.

– Another iterative alignment method is Praline [27]; it begins with a prepro-
cessing of the sequence to align.

In general, Evolutionary Algorithms tend to be suitable tools for the MSA
[28] and can be used to effectively search in large solution spaces. But they
spend a lot of time gradually improving potential solutions before reaching a
solution comparable to deterministic methodologies [29]. This is due to a random
initialization of the candidate alignments.

5 Results

The immune algorithm presented has been tested on the classical benchmark
BaliBASE version 1.0 and version 2.0. BAliBASE (Benchmark Alignment data-
BASE) [36] is a database developed to evaluate and compare all multiple align-
ments programs containing high quality (manually refined) multiple sequence
alignments.

BAliBASE is divided into two versions: the first version contains 141 reference
alignments and is divided into five hierarchical reference sets containing twelve
representative alignments. Moreover, for each alignment the core blocks are de-
fined. They are the regions which can be reliably aligned and they represent
58% of residues in the alignments. The remaining 42% are in ambiguous regions
which cannot be reliably aligned.

Reference 1 contains alignments of equi-distant sequences with similar length,
reference 2 contains alignments of a family (closely related sequences with > 25%
identity) and 3 ”orphan” sequences with < 20% identity, reference 3 consists of
up to four families with < 25% identity between any two sequences from differ-
ent families and references 4 and 5 contain sequences with large N/C-terminal
extensions or internal insertions. For an extensive explanation of all references
please refer to [3].

In the second version, BAliBASE v.2.0 [37], all alignments present in the first
version have been manually verified and it includes three new reference sets:
repeats, circular permutations and transmembrane proteins. It consists of 167
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Table 2. SP values given by several methods on the BAliBase v.1.0 benchmark
(http://bips.u-strasbg.fr/fr/Products/Databases/BAliBASE/) for multiple sequence
alignment

Aligner Ref 1(82) Ref 2(23) Ref 3(12) Ref 4(12) Ref 5(12) Overall(141)
Hybrid CSA 80.7 88.6 77.4 70.2 82.0 79.7
DIALIGN [20] 77.7 38.4 28.8 85.2 83.6 62.7
CLUSTALX [12] 85.3 58.3 40.8 36.0 70.6 58.2
PILEUP8 [11] 82.2 42.8 33.3 59.1 63.8 56.2
ML PIMA [17] 80.1 37.1 34.0 70.4 57.2 55.7
PRRP [22] 86.6 54.0 48.7 13.4 70.0 54.5
SAGA [25] 70.3 58.6 46.2 28.8 64.1 53.6
SB PIMA [17] 81.1 37.9 24.4 72.6 50.7 53.3
MULTALIGN [10] 82.3 51.6 27.6 29.2 62.7 50.6

Table 3. Alignment accuracies given by several methods on the the BAliBASE v.2.0
benchmark (http://bips.u-strasbg.fr/fr/Products/Databases/BAliBASE2/) for multi-
ple sequence alignment [15]

Aligner Ref 1(82) Ref 2(23) Ref 3(12) Ref 4(12) Ref 5(12) Overall(141)
SP CS SP CS SP CS SP CS SP CS SP CS

SPEM [15] 90.8 83.9 93.4 57.3 81.4 56.9 97.4 90.8 97.4 92.3 91.5 78.6
MUSCLE [24] 90.3 84.7 64.4 60.9 82.2 61.9 91.8 74.8 98.1 92.1 91.0 78.7
ProbCons [16] 90.0 83.9 94.0 62.6 82.3 63.1 90.9 73.6 98.1 91.7 90.8 78.4
T-Coffee [14] 86.8 80.0 93.9 58.5 76.7 54.8 92.1 76.8 94.6 86.1 88.2 74.6
PRALINE [27] 90.4 83.9 94.0 61.0 76.4 55.8 79.9 53.9 81.8 68.6 88.2 73.9
ClustalW [13] 85.8 78.3 93.3 59.3 72.3 48.1 83.4 62.3 85.8 63.4 85.7 70.0
Hybrid CSA 82.7 65.3 91.9 41.3 78.6 36.2 70.5 31.9 83.6 56.9 81.4 46.3

reference alignments with more than 2100 sequences. The three new references
contain 26 protein families with 12 distinct repeat types, 8 transmembrane fam-
ilies and 5 families with inverted domains.

Table 2 shows the average SP score obtained by the described alignment tools
on every instance set of BAliBASE v.1.0. The values refer to the Sum of Pairs
score, calculated by the ”baliscore.c” program. As it can be seen in the table,
Hybrid CSA performs well on the Ref 2 and Ref 3 sets. The values obtained aid
to raise the overall score, which is higher compared to the results published by
the Bioinformatic platform of Strasbourg1.

Table 3 shows the average SP and Column Score (CS) values obtained by
the compared tools on every group of instances belonging to the BAliBASE
v.2.0 database. The Column Score is defined as the number of correctly aligned
columns present in the generated alignments, divided by the total number of
aligned columns in the core blocks of the reference alignment.

1 http://bips.u-strasbg.fr/fr/Products/Databases/BAliBASE/
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The values used in table3 are drawn from data reported in [15]. Hybrid CSA
obtains comparable values of SP score on Ref 1, Ref2 and Ref 5 — despite the
fact that the value obtained on Reference 3 is the fourth best value. This table
also shows that future effort should focus on improving the CS metric.

6 Conclusions and Future Works

Experimental results of benchmark BaliBASE v.1.0 show that the proposed algo-
rithm is superior to PRRP, ClustalX, SAGA, DIALIGN, PIMA, MULTIALIGN
and PILEUP8. Whilst on BaliBASE v.2.0 the algorithm shows interesting re-
sults in terms of SP score with respect to established and leading methods, e.g.
ClustalW, T-Coffee, MUSCLE, PRALINE, ProbCons and Spem.

A strong point of the IA is the ability of generating more than a single align-
ment for every MSA instance. This behaviour is due to the stochastic nature
of the algorithm and the populations evolved during the convergence process.
Another advantage of the aligner is that the alignment process is not affected by
the presence of distant sequences in the starting protein set. As shown by the
experimental results, the scoring function used by the IA produces high SP val-
ues and low CS scores, therefore future work will first focus on the improvement
of the CS score values using the T-Coffee scoring function. The second step will
be the more accurate tuning of the parameters and the operators in order to
improve the convergence speed.
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Abstract. Intelligent Home is nowadays an established technology. Actually, 
most existing realizations of the Intelligent Home cannot really adapt to the 
needs of the inhabitants of the home so that they can learn typical user behavior. 
In this paper we present an AIS that can perform the usual control functions but 
in addition is also able to adapt to varying requirements and to learn. The AIS is 
network based. The antigens represent the requests to the home and the 
antibodies the responses to these requests. Both incorporate the relevant 
parameters in their structure. Antibodies are produced according to the bone 
marrow model and a sort of reinforcement learning mechanism is implemented. 
The operation of the AIS is described by a scenario. 

Keywords: Intelligent home, AIS-network, B-cell, antibody, antigen, adaptation. 

1   Introduction 

The intelligent home (iHome) is a technology that is in use since about the nineties as 
a by-product of building automation. It comprises several functions of which usually 
not all are installed in a realization. The mostly used functions are those for the 
security of the home. Other useful functions are control of temperature (heating and 
cooling) and of light. Existing realizations of the iHome operate with standard 
routines controlling certain parameters that are preset by the user. They cannot adapt 
themselves to varying requests of the users and they cannot learn typical user 
behavior and predict the needs of the users, in other words, they are not intelligent in 
the meaning of the word as it is used in AI or CI. 

A first step to the control of an iHome by means of an AIS was made in [2]. 
However, only some terminology from AIS was adopted in that paper, it lacked a 
deep understanding of AIS principles. Mozer has done a lot of interesting work in 
building an iHome (his own one) (cf. [8]). His approach is based on neural networks, 
probably because he is a psychologist working in the Cognitive Neuroscience 
community at Boulder. 

The iHome can be viewed as a kind of robot, though not a mobile but a stationary 
one. It is equipped with sensors and effectors of different types according to the needs 
of its functions. However, there are some important differences between the iHome 
and normal robot. The robot can be viewed more or less as a point-like entity, 
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whereas for the iHome spatial extension is an essential property. A robot exists in a 
certain environment and behaves according to its tasks and the conditions of the 
environment. The iHome also has an environment but it consists not only of the world 
outside the building but also of the world inside. In this part of the environment the 
iHome has to serve the varying requests of the inhabitants. 

From the different parts of the iHome we have chosen the heating system because 
with respect to temperature the requests of the inhabitants are not constantly 
changing, rather there exist typical scenarios that are to be followed and that can be 
learned by the iHome. These scenarios are specified to single rooms in the house, 
certain daytimes, and the weekdays. The iHome must be flexible enough to react to 
deviations from the scenarios triggered by the inhabitants and to adapt to changes of 
the scenarios in time. In any case the iHome has to take into account the weather 
conditions outside. 

Section 2 of this paper gives an overview of the heating system of a home. Section 
3 describes how the requirements of the heating system must be formalized to build 
an AIS for controlling such a system. Based on the definitions in section 3 the AIS is 
modeled in section 4 with the structure of the antigens and antibodies, the network, 
and the bone marrow model. The results of a few simulated tests that are designed 
according to various needs of the inhabitants are presented in section 5. Finally, 
section 6 concludes the paper. 

2   Some Properties of the Heating System of a Home 

Figure 1 shows a heating system. Components like radiators and outlets of heated 
water are represented only once for simplicity. As can be seen from the figure, in a 
modern heating system one tries to reduce the costs of heating making use of different 
energy sources not only fossil fuels, e.g. solar energy. Also, the control of the 
temperature by the system tries to minimize the costs by reducing temperature by 
some degrees when a room is not used. 

 

Fig. 1. The structure of the heating system in a home 
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The most important factors that should be regarded for the control of the heating 
system are the outdoor temperature, indoor temperature, type of the room, frequency 
of use, daytime, weekday, and ventilation. For the outdoor temperature an air 
temperature sensor must be installed outside the home. The indoor temperature is 
measured by air temperature sensors in each room. The temperature should be on a 
level that is pleasant to the inhabitants. Here, feedback can be given by the inhabitants 
by adjusting the temperature. The type of the room and the frequency of use are 
closely related. The frequency can be measured by motion detectors in the rooms. It 
clearly varies according to the type of the room but also to the daytime and even to 
the weekday. Daytime and weekday are in general important for the temperature, e.g. 
during the night, the temperature can be reduced. Ventilation also plays a role because 
a well controlled ventilation produces a good indoor climate and saves energy. 

3   The Structure and Functioning of the AIS 

The architecture of the AIS for the heating system is shown in figure 2. It consists of 
three components: the central unit, the AIS-network and the bone marrow. The central 
unit serves as an interface to the outside world, i.e. to the hardware of the heating 
system. It receives signals and produces antigens from these signals, and in the 
opposite direction it transforms the output of the network into commands to the 
heating system. The bone marrow produces new B-cells and adapts them to the needs 
of the AIS-network if necessary. The AIS-network performs reactions to the 
stimulations by antigens and antibodies by the operations selection and mutation, both 
based on the affinity between the elements. 

 

Fig. 2. The architecture of the AIS 
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3.1   Antibodies 

The antibodies have a structure similar to those of Farmer and colleagues [3]. They 
consist of three components: a paratope, an encoding of the temperature, and an 
idiotope, cf. figure 3. Both, paratope and idiotope, have four attributes encoding the 
type of the room, the weekday, the daytime, and the frequency of use (of the room). 
The encoding of the temperature contains the current heating temperature and the 
optimal temperature. The last one is used to adapt the heating temperature to changes 
of the current temperature caused by regulations or ventilations By its paratope an 
antibody can recognize epitopes as parts of antigens but also idiotopes of other 
antibodies. The encoding of the temperature is evaluated in the central unit and is 
used to control the heating system. 

 

Fig. 3. The structure of the antibodies 

3.2   Antigens 

The structure of the antigens is similar to that of the paratopes of the antibodies. It 
consists of the same four attributes, but in addition it has two other attributes encoding 
the indoor and the outdoor temperature. The additional attributes are required for the 
adaptation of the optimal temperature by the system and so indirectly of the heating 
temperature as well. 

3.3   B-cells 

B-cells are used as carriers of antibody molecules. In addition to the antibody a B-cell 
has three attributes that encode parameters for the concentration, the ageing, and the 
selection of the cell. The value of the concentration parameter describes the 
concentration of the antibody in the network; the other two parameters are used to 
control the selection and elimination of the cell. 
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3.4   The Bone Marrow 

The bone marrow (figure 4) produces the B-cells and hands them over to the AIS-
network. For this purpose, first antibodies are composed of arbitrarily chosen parts. 
They are considered as immature and have to mature which means that the room 
temperature must be adapted to the values required for the different rooms. The value 
of the temperature parameter is computed from the encoding of the room and the 
frequency of use and of a predefined value for each room. In addition, it is adapted by 
signals from the network that record modifications of relevant antibodies in the 
system. The mature antibodies are completed to B-cells by values for the three 
parameters for concentration, ageing, and selection. 

 

Fig. 4. The structure of the bone marrow 

3.5   The Central Unit 

The central unit is the interface between the AIS and the heating system as well as the 
ventilation system, cf. figure 5. With respect to the heating and ventilation system, it 
stores measured values from the hardware and commands from the inhabitants 
concerning regulation and ventilation, and on the other side, sends commands to the 
heating and the ventilation system. With respect to the AIS, it decodes the information 
delivered by antibody molecules, it produces stimuli that act as a kind of interrupt 
signals and are considered in this context as co-stimulative signals, and produces 
antigens from the measured values and the commands. In addition, it controls the 
other two components of the AIS, the network and the bone marrow. 

The AIS-network is controlled by means of a number of parameters that can be 
regulated by the central unit. Among them are the initial size of the population, the 
size of the whole network, the number of elements that are best suited for the affinity 
computation as well as those that are worst suited, the number of elements that are 
best suited for mutation as well as those that are worst suited, the number of new 
elements, the number of elements to be eliminated, and the mutation rate. The bone 
marrow is controlled by regulation of the production of initial antibodies, the 
adaptation of initial elements, the initial values of the B-cells, and other parameters. 
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Fig. 5. The structure of the central unit 

3.6   The AIS-Network 

The network is the heart of the AIS. In cooperation with the central unit and the bone 
marrow it realizes three main functions: It determines the antibody that fits best to an 
antigenic stimulus (the so called key element), it processes the co-stimulative signals 
 

 
Fig. 6. The structure of the AIS-network 
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concerning the adaptation to the desires of the inhabitants, and it processes the co-
stimulative signals that control the ventilation. The network is shown in figure 6. 

In principle, the network consists of a number of functions that are closely 
connected with each other such that there is a strong interdependence between them. 
These functions control the buffer for the antigens and for the results, they compute 
the affinities between antigens and antibodies and among antibodies, they determine 
the mutation of antibodies and the production of new ones, they adapt the temperature 
parameter according to the desires of the users, they eliminate useless elements, they 
determine the key elements by a number of interrelated sub-functions, and finally 
select the best suited antibody. 

4   The Realization of the AIS 

A prerequisite for the AIS is the encoding of the attribute values. Some of them are 
real values, others are symbolic. For a uniform representation we decided to encode 
them as binary strings. In order to do this the real type parameters are divided into a 
finite number of intervals and their values are replaced with these intervals so that we 
end up with only a finite domain for each parameter. The implementation has been 
done in Java. For each main function and main component a class together with a 
number of subclasses is defined. Each class has a function for the input of values and 
an output function. The encoding is shown by the example of the codes for the rooms 
and some important classes of the implementation are described in more detail in the 
following subsections. 

4.1   The Code of the Rooms as an Example for the Encoding 

Each room in the house is encoded by a binary string according to the following 
criteria: 

• Duration of use, 
• frequency of use, 
• preferred time of use, 
• preferred temperature. 

For instance for the bathroom and the living room we fixed values according to 
table 1: 

Table 1. Parameter values for the encoding of rooms 

 Duration of 
use 

Frequency of 
use 

Preferred time of 
use 

Preferred 
Temperature 

Bathroom low often morning/evening 22 – 24 °C 
Living Room high only once evening 20 – 22 °C 

All rooms are encoded according to this scheme. The values of the criteria 
mentioned above are encoded in such a way that the codes of similar values are close 
to each other.  Table 2 gives an example for the frequency of use. This encoding has 
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the effect that an antigen with high affinity to one of the three values low, medium, 
and high has also a certain affinity to the other values. 

Table 2. Encoding of values 

Frequency of use Code 
none 00000 
low 11100 
medium 11101 
high 11111 

4.2   The Class Definitions for Antibodies and Antigens 

The two classes have similar structure and are responsible for the access to the 
parameter values. They can be created by the user, but normally antigens are 
produced by the central unit while antibodies are produced by the AIS-network. The 
method for the input of values in the definition of an instance of the class Antigen for 
instance is Antigen(), the method for displaying the relevant values of an instance 
is AgPrint(). The creation of an antigen is illustrated in figure 7, the output of the 
method AgPrint() is shown in figure 8. 

 Antigen Ag = new  Antigen(„110111111“, 
       „11111101“, 
       „01110111“, 
       „11111“, 
       11, 
        -5); 

 

Fig. 7. Creation of an antigen 

 Ag: 110111111 11111101 01110111 11111 11 -5 
Des: living room  &  Tuesday   &  0 – 1 a.m. & no use

 

Fig. 8. Displaying an antigen 

The output shows the codes for the room, day, time, and use, further the outdoor 
temperature (11), and the outdoor temperature (-5). In the antibody class the first four 
parameters correspond to the paratope part of the antibody and have the same 
meaning as in the antigen class, while the last two parameters represent the heating 
temperature and the optimal temperature. In addition, the antibody class contains four 
parameters for the idiotope part and their values are initialized complementary to 
those of the paratope part. An antibody with high affinity to the antigen of figure 8 
would have the first six components shown in figure 9. 

 Ag: 001000000 00000010 00000000 00000 | !!11!! | 11 | 
Des: living room  &  Tuesday   &  2 – 3 a.m. & no use

 

Fig. 9. An antibody with high affinity to the antigen 
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The total affinity between antigen und antibody is determined as the sum of the 
affinities of the corresponding parts of both plus certain weights for these parts, e.g. 
for the room 0.00, for the day 0.10, for the time 0.25, and for the use 0.75. These 
weights reflect the priority between the parts. The total affinity is computed by 

≠
==

= otherwise0

if1
with

1

AgAb
D i

L

i
i δδ  

L is the number of parts in the definition of the antigens, i.e. L = 6 in the example 
above. Codes for neighbored day times get an additional weight such that an antibody 
for time tj+1 has a greater affinity to the actual antigen (representing time tj) than an 
antibody for a previous time. 

4.3   The Class Definition for the AIS-Network 

This class, called AIS, has the method AIS() by which a new network is created, i.e. 
an initial population of antibodies. There are methods for the ventilation and the 
regulation of the heating system. The most important method is upgradeAIS() 
which performs the network algorithm. The algorithm follows that of de Castro and 
von Zuben but is extended by some elements from clonal selection theory, in 
particular the co-stimulative signals that are used to represent regulation and 
ventilation signals given by the users. It proceeds in the following steps: 

 Determine the current antigen 
 Check co-stimulative signals 
 Create a list with a fixed number of new B-cells (from the bone marrow) 
 For each B-cell in the network do 
  Select the antibody molecule form the B-cell 
  Compute its affinity to the antigen 
  If the affinity is higher than those of the elements in the list, add the B-cell to 
   the list 
  If the affinity is lower than a certain threshold value, mark the cell as useless 
  Determine the concentration and the age of the B-cell 
  If the affinity of the B-cell’s antibody is higher than that of the elements in the 
   list of B-cells, add the cell to the list and possibly remove another one 
 Fix the key element for the current room according to the best one of the B-cells 
 Generate a list of mutated antibodies from the list of best B-cells 
  Determine the mutation rate 
  Generate a mutated antibody according to the mutation rate 
  Store the antibodies in a special list 
 Eliminate antibodies whose affinity is lower than that of the last element in the list 
   of best B-cells 
 Eliminate a predefined number of elements from the list of useless elements 



344 M. Lehmann and W. Dilger 

5   A Test Scenario 

We have tested the system with a number of scenarios that show the different 
functionalities of the system, i.e. how the system adapts itself to various needs of the 
inhabitants and to regulation and ventilation signals. The test data were produced by 
means of the class createAntigens. We will demonstrate the processing of the 
system with a scenario that shows how the system adapts to co-stimulative signals for 
ventilation and regulation while the behavior of the users stays unchanged. 

The scenario starts with a list of 10×24 antigens which represents the input of 24 
antigens (one for each hour of the day) ten times. Together with the antigens at certain 
times co-stimulative signals for the regulation are sent to the system. At the beginning 
of a week new signals for ventilation are prefixed and stored in the AIS which are 
processed at the defined times. The settings are repeated for each week with minor 
modifications to simulate the behavior of the system during several weeks. Figure 10 
shows how the values of the temperature change during one day of the second week. 
The first to weeks represent the initialization phase of the system. 

 

Fig. 10. Course of the temperature values for one day 

Figure 11 shows how the system reacts on two regulation signals in the 2nd (up by 
3° C) and in the 7th hour (down by 2° C) and on a (prefixed) ventilation signal in the 
13th hour. The ventilation signal causes the heating temperature to go down. The 
system keeps the modifications by the regulation and ventilation signals and adapts 
the heating and the optimal temperature in the following weeks. This is achieved by 
new or mutated antibodies that are introduced into the network. 
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Fig. 11. Regulation and ventilation signals 

In figure 12 the down regulated signal in the 7th hour is again regulated up by 3° C 
and an additional ventilation signal in the 17th hour is given. The system immediately 
adapts to the regulation signal since appropriate antibodies are still available, and it 
adapts to the ventilation signal in the same manner as to the first one in figure 10. 

 

Fig. 12. Additional regulation and ventilation signals 
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Figure 13 shows the situation after an additional regulation signal. The temperature 
in the 2nd hour is regulated down by 5° C. This influences the antibodies that are 
associated with the 2nd hour in this room and at this day. The regulation in the 7th hour 
is kept unchanged since the antibodies associated with this hour are not influenced. 
The ventilation signals shown in figure 12 are removed from the system because they 
had only a temporally suppressing effect and the system can adapt to the normal 
behavior very quickly. 

 

Fig. 13. A new regulation signal and the disappearance of the ventilation signals 

Finally, figure 14 shows the unchanged effect of the previously done regulations 
and how the system has optimally adapted to the desires of the users. This can be seen 
by comparing figures 13 and 14. The heating temperature is regulated down in the 1st 
hour and up in the 12th hour because the system has learned that the users expect a 
lower temperature at the 2nd hour and at the 13th hour and so it starts in time with 
regulating up or down. 

The purpose of this scenario was to demonstrate how the system can adapt to 
regulation and ventilation signals which are treated as co-stimulative signals. As we 
have seen in our experiments, it is rather easy for the system to learn the “normal” 
behavior of the users, i.e. the usual course without interrupt signals. But the aim that 
we had with this system was to make it able to adapt quickly to special demands from 
the users (by interrupt signals) without forgetting the normal course of events and 
being able to get back to it as soon as possible. Interrupt signals have only local 
effects around the hour where they are sent. In particular the ventilation signals 
influence the system only temporally so that it quickly returns to the normal course 
when the signals are no longer delivered. 
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Fig. 14. The final adaptation of the system to the desires of the inhabitants 

The reason for this behavior of the system lies in the use of the antibodies that are 
specialized to rooms, weekdays, and hours. When an adaptation is required at some 
hour, the antibodies responsible for the normal behavior in this hour are not 
completely eliminated; rather some of them survive for some time and can be easily 
reactivated if necessary. This makes the system able to quickly re-adapt when the 
deviating behavior is no longer required, and this is important for a flexible use of the 
system in the context of the intelligent home. 

6   Conclusion 

We have described an Artificial Immune System that has been developed for the 
control of an intelligent home. Such a system should be able to learn the normal 
behavior of the inhabitants which is assumed to be constant for most of the time. This 
assumption is certainly correct for most people. The system must be able to 
differentiate between days, times, and rooms in the house. In addition, the use in the 
home requires the ability to quickly adapt to spontaneously sent signals from the users 
and to re-adapt to the normal behavior later. 

We have presented in this paper an implementation of an AIS that satisfies the 
needs of the intelligent home and we have demonstrated how it operates by a certain 
test scenario that in particular deals with the problem of adaptation to commands 
deviating from the normal behavior. We have tested the system in a number of other 
scenarios not included in this paper. In these scenarios the regular use, the regular use 
with a break of two weeks of no use, the regular use with a change of use after a 
number of weeks, irregular use with frequent changes, and the control of several 
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rooms. In all these cases, the system adapted pretty well to the various requirements. 
In addition, we did some tests to determine optimal values for the relevant parameters 
in the system like mutation rate and adaptation of concentration. 

Further developments on an AIS for the intelligent home should include other 
components of the home, e.g. the lighting system. We have already developed an AIS 
for such a system, but this is based on the clonal selection theory, and it turned out 
that the results are not as convincing as those based on a network approach. The 
appropriate choice of the parameter values is always a problem in an AIS. It depends 
on the deployment of the AIS therefore it would be a good idea to have some kind of 
meta-learning system that is able to adapt the parameters to the current application. 

Finally, the question remains about the actual deployment in a house that has all 
the required technology at its disposal. The heating control system we have presented 
has a clearly defined interface to the outside world, in this case to the world of the 
hardware of the heating system via the central unit. It is responsible for the translation 
of incoming signals into antigens and it produces commands to the heating system 
from the antibodies. For the test of the system it does not matter if the signals are real 
or simulated. However in general, reality is different from simulation to some degree. 
Therefore we hope that we can connect it one day to the iPhon-software of ESF 
Software Company. iPhon is a control system for building automation ([6]) but has 
also been deployed for the control of iHomes. If the AIS will be successfully tested in 
combination with iPhon, it may be possible to implement it in one of the homes where 
iPhon is in use. 
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Abstract. A model for integration of low-level responses to damage,
potential damage and component failure in robots is presented. This
model draws on the notion of inflammation and introduces an exten-
sible, sub-symbolic mechanism for modulating high-level behaviour us-
ing the notion of artificial inflammation. Preliminary results obtained
via simulation are presented and demonstrate the potential benefits of
such a scheme. Additionally the system maps the robot’s physiological
state-space, which is defined in terms of the levels and sources of inflam-
matory response. This is achieved using Kohonen’s Self-Organizing Map
algorithm to arrange the states experienced during the lifetime of the
robot. The future use of this map for diagnosis and localization of faults
and for the generation of specific high-level remediation behaviour is also
discussed.

Keywords: Artificial Immune Systems, Human Immune Systems, In-
nate Immunity, TLR, PAMPs, Inflammation, SOM, Robot.

1 Introduction

With a few rare exceptions such as [10,4], the innate immune system has been
neglected in artificial immune systems [3], especially in the field of robotics which
appears to have much to be gained from such an approach. The functions mak-
ing up this part of the immune system, offer a number of useful analogies that
can be exploited in a robotic system. In the quest for autonomy an artificial in-
nate immune system can be applied in order to create systems which are aware
of their own state. This could allow them to maintain a “healthy”, homeostatic
balance and achieve self sufficiency. In order to achieve this a robot must contain
a number of proprioceptive1 sensors, monitoring various state measures across
1 proprioceptive: sensing internal body state.
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the physical domain of the robotic system [2]. An analogy emerges here with
Toll-Like Receptors (TLRs) as sensors of potentially problematic signals within
the body. Such signals are known as Pathogen Associated Molecular Patterns
(PAMPs) [9]. In robotic systems simple sensors capable of detecting problematic
circumstances (eg. “motor3 overheating”) can often be used locally to help reme-
diate the problem without recourse to high-level software and control systems.
This is directly analogous to the types of action taken by innate immune sys-
tem components (such as macrophages) endowed with TLRs. Difficulties arise
in engineering complex robotic systems (or other electro-mechanical systems)
which attempt to integrate the input from large numbers of such local sensing
and remediation devices into high-level control systems. It rapidly becomes im-
possible to predict all possible combinations of problem and remediation action,
and computationally expensive to process all this information in the high-level
controller. A number of approaches to robot control have addressed this problem
with varying degrees of success, the best known being [1]. The notion of artificial
inflammation allows the integration of information about low-level response pat-
terns into a small number of global signals which represent the “state of health”
of the system throughout time. These simple inflammatory signals can then be
used via schemes such as neuro-endocrine control [7,8] to modulate high-level
control systems appropriately.

The representation of the states of the robotic system using Kohonen’s Self-
Organizing Maps (SOM) [6] allows the sources of the inflammation to be localized
within individual nodes in order to both diagnose problems at intermediate levels
(eg. “motor compartment 2 overheating”) and to allow higher-level remediation
to be appropriately targeted on the components that directly affect the inflamed
parts of the robot.

A description of the physiology of a robot follows, including the analogy drawn
from the innate immune system. Next, a step-by-step description of the model is
used to show exactly how it works both in this specific case and how the scheme
works in general. A proof of concept experiment is described, supported by the
results obtained and a commentary on what the results show. This is followed
by some conclusions, including advantages and disadvantages of the proposed
model.

2 Robot Physiology

In general a robot is a complex system made up of numerous interacting com-
ponents that can fail or malfunction alone as well as in combination. Typical
components also include automatic damage protection functions and circuits
such as locally switched cooling fans and automatic overheat cut-outs. Analo-
gies between such components and the innate immune system are presented here.
Firstly the function of TLRs in the innate immune system is the detection of
PAMPs. In a robot the proprioceptive sensors which monitor the state of the
robot can be considered to be analogous to TLRs. For example a temperature
sensor, measuring the temperature of a motor within a robot might have a TLR
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associated with it containing a function (see Figure 1) which determines if the
TLR gets triggered and by what amount. PAMPs, in terms of robotics are sig-
nals received by the robot’s proprioceptive sensors (TLRs). These can trigger the
TLRs starting the immune response in order to prevent possible damage in the
long run. For example a temperature which exceeds various predefined thresh-
olds might trigger responses designed to limit or prevent damage. In the natural
innate immune system the action of TLRs leads to the generation of an inflam-
matory response via a number of pathways and mechanisms. This response is
initially characterized by the generation, accumulation and diffusion of cytokines
through the local tissues and into the bloodstream. In the longer term, continued
inflammation results in a sustained “stress response” which has wide-ranging and
diverse effects at a number of levels. This can affect physiological responses, be-
haviour and psychological state. These responses might vary from protection of
an inflamed area, to the reduction of use of a limb due to localized pain through
to increased sleep periods in severe cases. These varied responses can be incorpo-
rated into an innate artificial immune system with the help of the SOM. This can
be achieved by activating the SOM using the current state vector of the robot
(represented by the states of activation of all TLRs in the robot) and respond-
ing appropriately to affect the high-level controller, by releasing hormone into a
neuro-endocrine controller for example. Whilst not implemented here assignment
of remediation activities to particular nodes of the SOM (such as specification of
which hormone to release) could be achieved automatically by examining which
components of the robot are the source of the inflammation and selectively sup-
pressing control system components which access those components. In the first
instance this is a reasonable assumption, but in those cases where this response
is insufficient to prevent further inflammation the SOM can be used to “spread”
the inflammatory response to neighbouring nodes in order to suppress activity
of components in closely related states. The gradual spreading of inflammation
through the SOM ensures that the dependence on “engineered-in” relationships
between component failures and remediation activities is only used in the first
instance. When such relationships are incompletely or incorrectly assigned, the
spreading to other closely related remediation activities improves the likelihood
of an appropriate response being elicited in a computationally inexpensive and
extensible manner.

TLR1 TLRx

f(TLR x

.  .  .TLR4TLR3TLR2

)={      . . .
Response n

Response 2

Response 1

Fig. 1. Schematic of the TLRs’ functions
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For example, this could enable the system to locally engage in an activity in
an inflamed area in order to prevent damage. In the case of an overheating motor
this localisation feature ensures that a nearby fan gets switched on, rather than
a fan in a distant part of the robot.

The inflammatory response is simply accumulated over time from the indi-
vidual TLR response levels. The sum of TLR activity is calculated at each time
step and added to the current inflammation level. Also at each time step the
inflammation level is geometrically decayed. Thus the formula for updating the
inflammation at each time step is as follows:

inft+1 = decay × (inft +
n∑

x=1

f(TLRx)) (1)

where inft is the inflammation level at time t, decay is a scalar in the range
0 < decay < 1 and f(TLRx) is the activation level of the x’th individual TLR
from a set of n in the complete system.

3 Innate Autonomy

A detailed description of the functionality of the model follows, presenting a
framework for robot autonomy based on the innate immune system.

Assuming a simplistic robot comprising of four motors, two fans and four
sensors each measuring the temperature of one motor, a description of each step
of the model is given. The robot is initially in a stable, homeostatic state from
which it will deviate over the duration of the description of the model. The
homeostatic state is defined to be when the four motors are operating contin-
uously with the fans switched off. All four motors can be switched on and off
at any point in time, according to the activity of TLRs (based on the motor
temperatures). Both fans can also be triggered (also by the TLRs) to cool the
motors.

3.1 PAMPs

At regular intervals sensors within the robot collect data about the robot’s state
and convert this data into signals. These signals are analogous to PAMPs in the
human body. These signals are collected by the corresponding TLRs in order to
monitor and respond locally to the state of the system. In our example robot
these are simply the temperatures of each individual motor.

3.2 TLRs

If one motor is overheating while the others are functioning correctly, the associ-
ated sensor generates a PAMP which is passed to the related TLR. A PAMP is
defined to be a sensor reading that deviates from normal according to a prede-
fined function, which operates as part of the TLR. Each TLR has a predefined
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set of responses as shown in Figure 1. Once the TLR receives the signal (ie.
the temperature reading), it evaluates it according to predefined condition and
response pairs shown in Table 1. The TLR also returns the inflammation level
associated with the particular response:

y = f(TLRx) (2)

where x denotes the TLR in question and y denotes the inflammation level asso-
ciated with the action that should be performed when the robot is in that state.
Such functions can be implemented in terms of simple mathematical functions,
lookup tables, fuzzy logic operators or any other appropriate technique. An ex-
ample input could be the value 50, which represents the temperature of one of
the motors and a response is generated according to the following lookup table
(for example):

Table 1. Function table

Condition Response

Tx < 40oC ∅
40oC < Tx < 80oC Fan On

Tx > 80oC Fan On, Motor Off

This means, that the outcome of the function f will be the action Fan On. This
is a local immediate response to the trigger of a single TLR. If the temperature
is within the acceptable range, no action will be taken.

Response1 Response2 ... Responsen

TLR1 1.0 1.0 ... f(TLR1)
TLR2 0.0 0.0 ... f(TLR2)

... ... ... ... ...
TLRx ... ... ... f(TLRx)

x
m=1 f(TLRm) ... ... ... ...

Fig. 2. Input Feature Vector

In this model implementation, the stable state inflammation level is repre-
sented with the real value 0.0, while the TLR triggered state is 1.0. This is the
contribution to the inflammation level described above. Once the model collects
the outputs of the TLR functions of each individual TLR, a vector is created
from the responses as shown in Figure 2. This vector is used as input to the
SOM and the sum of its components is used to update the inflammation level
according to equation 1.
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Fig. 3. Self-Organizing Map trained using data acquired from the simulated robot
control system. The upper left corner represents normal operation states, and the
dark patch in the lower right quadrant represents states where many or all of the
TLRs are responding. Other regions of the map represent states where fewer TLRs are
responding.

3.3 Self-organizing Maps

The higher level state representation of the robot is encoded using a SOM [5].
The strength of a SOM algorithm in the context of this work is the way it

deals with multidimensional input vectors. The algorithm is able to cope with
large amounts of n-dimensional data and find correlations between them. This
means that a system incorporating a SOM is highly scalable, as large numbers
of input sensors can be dealt with. Upon finding a correlation between input
vectors, the algorithm locates an appropriate neuron within the SOM, which
consequently gets activated. This process is performed in an unsupervised man-
ner, thus avoiding tedious and possibly inaccurate supervised methods, which
would only allow a limited set of states to be represented within the map. A
SOM is a low dimensional representation of the input data which preserves the
topological properties of the input and explicitly represents multiple relation-
ships between similar states. This feature enables the proposed system to evolve
the map in a way which can be exploited for the purpose of inflammation. Neu-
rons within the SOM which are topologically in close proximity represent states
with certain similarities and thus result in only slightly different responses when
activated. This is in contrast to most traditional statistical analysis methods
such as cluster analysis or minimal spanning trees which do not unambiguously
and explicitly represent such rich relationships between data items. The SOM
also allows the possibility of learning on-the-fly without requiring discontinuous
reorganisations of the state map which can result using statistical analyses such
as cluster analysis.
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The SOM contains all possible states of the robot, distributed across the
map in a topologically ordered fashion and clustered according to similarity of
the states. Initially the SOM is trained on a set of known problematic as well
as stable states. This gives the map an informed starting point, from which
it can evolve and adapt over the lifetime of the robot. A major feature of a
SOM is the clustering effect which means that general robotic states can be
identified in the maps produced when trained in this way. An example of this is
the stable/homeostatic state; this state will be represented within the SOM by
a cluster of similar nodes in which most of the TLR responses are zero. This can
be seen in figure 3 in the top left corner of the map. In contrast the dark region
in the lower right quadrant of the map has clustered all the states in which two
motors are overheating and can be considered to be a stressed state of the robot,
and if the robot remains in this state for long periods then inflammation will
result and spread the activation throughout the map.

The input into the SOM is the TLR vector, which contains all TLR responses.
This vector is presented to the SOM and the algorithm finds the node within
the map which is closest to the input feature vector. In our case this is measured
using the Euclidean distance.

3.4 Neuro-endocrine Control

The system then passes on the responses, which correspond to the winning node
within the SOM, in order to influence the higher level control mechanism’s be-
haviour. This response could be achieved in a number of ways, but perhaps a
good candidate would be using a neuro-endocrine control system [7,8] where the
artificial hormone is simply the inflammation level. These neuro-endocrine con-
trollers rely on standard multi-layer perceptron neural networks with the simple
addition of sensitivity to hormone concentrations built into their synapses. Thus
the neural networks in the control system could be selectively (selection being
performed by the SOM) suppressed by the application of the inflammation level
as an artificial hormone at their synapses in the (now standard) neuro-endocrine
way:

u =
nx∑
i=0

wi · xi · inft (3)

where n is the number of synapses at the artificial neuron, wi is the weight
associated with the i’th synapse, xi is the input to that synapse and inft is the
inflammation level at the time t. This new activation level is then used with the
standard output function:

o =
1

1 + e−u
(4)

where o is the output from the neuron in question. This provides a simple but
effective way of affecting the higher level control systems of the robot.
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3.5 Spreading Inflammation

The clustering effect of the SOM offers a way of dealing with local as well as more
widespread problems in a way which is analogous to inflammation. The robot
is in a stable/homeostatic state if all its actuators are working correctly. Once
problems start to occur, the nodes which become activated within the SOM fall
outside the cluster of the stable behaviour. Once in such an unstable state the
artificial innate immune system first deals with the problem locally at the level
of TLRs. In case this local prevention does not return the robot to a stable state
within a short period of time, inflammation starts to spread to neighbouring
nodes of the current state node. This way the system deals with the problem by
performing similar, yet slightly different responses, until the problem is rectified
and the robot is returned to a stable state (a node within the SOM is activated
which belongs to the cluster of stable/homeostatic behaviour).

4 Proof of Principle

A proof of principle implementation has been developed to demonstrate the key
features of the operation of the model as described above. The model contains
a small number of TLRs and uses inflammation responses generated by them to
modify behaviour of a very simple high level control system. The inflammation
response is integrated across the system and is decayed in the manner indicated
above. Simple physical models of heating and cooling of motors are included in
the simulation. The SOM component is not currently integrated into the system,
but the vectors representing the system state were collected during the execution
of the model and were used to train an SOM to prove the principle. This imple-
mentation has been performed as a simulation containing the important parts
of the robot’s functionality. The following results were obtained, supporting the
proposed principle and its viability in a future physical system implementation.

4.1 Description of the Model

The simulated robot has two motor compartments: one for the front two wheels
and one for the rear two wheels. Each wheel has a separate motor as is common
in all-terrain robots. Each compartment also has a single cooling fan which is
responsible for cooling the pair of motors in that compartment. Each motor has a
TLR associated with it which monitors the motor’s temperature. Each TLR has
three possible states. The “normal” state is that the motor is enabled and the
fan is switched off. When the motor reaches a predefined threshold temperature
the TLR will activate and switch on the fan in that compartment. If the motor
reaches a second, higher threshold temperature which endangers the motor then
the TLR will activate a thermal cut-out which cuts all current to the motor in
question in order to allow it to cool. This disables the motor and thus deprives the
high-level control system and the robot as a whole of the use of that motor. The
simulation ensures that the temperature of the motors increases proportionally
to the current passing through it. The motor model also includes a simplistic but
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sufficiently realistic cooling curve, the effects of which can be discerned in figure
5. The current applied to the motor is controlled by a high-level control system,
which in the simulation is a simple fixed sequence of instructions. The purpose
of the simulation is to demonstrate the action of the innate immune system
components, and thus the implementation of a neuro-endocrine controller was
not deemed necessary.

It is important to note that decisions are taken by the TLRs without the in-
tervention of the high level control system, and they have to be considered as the
first response of the immune system. The high level control system might then be
influenced to change its behaviour depending on the inflammation present in the
system through a scheme such as the neuro-endocrine controller outlined above
(see section 3.4). In this model a more simplistic high-level control mechanism
is used, but importantly it is affected by the inflammation level and modifies
the requested current taking this inflammation level into account. This is a very
simplistic remediation mechanism.

5 Results

Figure 4 shows how increasing current causes an increase in inflammation. The
oscillations in the inflammation are due to the action of the TLRs switching the
cooling fans and the motors themselves on and off. The effect of the inflammation
is also to reduce the currents requested by the high level control system using a
simple inversely proportional relationship (see Figure 6). The high-level control
system is at the same time always attempting to return the motor currents to
the requested levels.

Figure 5 shows the temperature of one motor over a period of time varying with
the current. For a current of 0.1, after reaching the limit temperature of 40 (this
value was fixed arbitrarily) a response is performed by the TLR which causes the
fan to switch on. This operation causes the temperature of the motor to decrease.
However the high level control system is trying to return current to the requested
level. Considering a current of 0.1 the fan is always able to control the temperature.
This pattern can also be seen when the current is 0.2. A different case occurs when
the current is 0.5, this means that the high level control system is driving the motor
at a high rate in order to fulfill its aim. This causes the TLR to activate the fan and
frequently switch off the motor to prevent damage.

Figure 6 shows the effects of varying current over time in different motors
and the resultant inflammation level. In this experiment motor1 simulates the
occurrence of a fault, resulting in excessive current at time step 500. This causes
the inflammation level to rise in steps as the requested current increases at time
steps 1000 and 1500. The dramatic increase in inflammation at time step 2000 is
due to the failure of the fan to cool motor1 and subsequent coincidental failure
of motor2 and motor3. This inflammation comes from the activity of TLRs 2
and 3 as they activate the other fan and switch off the motors when required. At
time step 2500 the faults are removed from the motors and the system returns
to normal operation. This type of over-current condition can result from sticky
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Fig. 5. Impact of varying motor current over the time

motor bearings or fouling of axles by long grass and is relatively common in
drive motors of all-terrain robots. The figure illustrates the way in which the
inflammation level varies and responds to the state of the robot and how it can
rapidly return to “normal” when faults are dealt with.



Don’t Touch Me, I’m Fine 359

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35

40

45

50

 c
ur

re
nt

 

in
fl

am
m

at
io

n 
le

ve
l

time

motor1
motor2
motor3
motor4

inflammation

Fig. 6. Effect of the current change on the inflammation level

Figure 3 shows the SOM as generated using the state input feature vectors
taken from the above experiments. A clear cluster, representing the homeostatic
state, can be seen in the upper left region of the table. This cluster comprises
of states which contain value 0 for all TLR responses. This value represents no
triggering activity of the TLRs. By contrast, the dark region in the lower right
quadrant represents triggering of TLRs both to switch on a fan and to switch two
motors off to prevent damage. The region in the centre of the bottom row rep-
resents triggering of a single fan, and is bordered by regions to the left and right
which represent switching on the fan in the other motor compartment (left) and
switching off a motor in the overheating compartment (right). These adjacent
regions can be used to highlight what might happen if inflammation caused by
the single fan in the first motor compartment persists and is required to spread
through the SOM. Activation of the adjacent regions mentioned will trigger
preventative high-level actions appropriate for these closely related states. For
example reducing current in the affected motors is likely to be one of the actions
taken in order to pre-empt the triggering of the TLRs in the other components.

6 Conclusion

Aschemefor incorporating low-leveldamagepreventionandmaintenanceactivities
into a coherent biologically inspired control paradigm has been proposed, based on
an innate immune system. Three important aspects of the innate immune
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system have been applied with clear analogies between a robotic and a human im-
munesystem.ThesearethenotionofTLRs, inflammationandlocalisation.Thesys-
tem has been developed with the help of a SOM as an adaptive state representation
of the robot,which enables local aswell as global failure prevention and ratification.
A model has been implemented to support the above given principles. Results from
performed experiments show that the activity of TLRs causes an incremental in-
flammatory response over time, in case the robot is not returned to a stable state in
a reasonableperiod of time. This inflammatory response can be used alongwith the
SOM to locate the affected area of the robot in order to deal with it on amore global
level. The presented preliminary results support the described principles and en-
courage future development of a real robot implementation incorporating immune,
neural and endocrine control components.

Some of the potential advantages of this scheme are highlighted throughout
the earlier parts of the paper, but perhaps one of the most significant is that it of-
fers a relatively simple mechanism for integrating existing engineering knowledge
of how to deal with particular problems locally with the higher level and less well
defined parts of the control system. Some potential disadvantages include: that
the engineer must still manually assign fault conditions and remediation activi-
ties for local conditions which leaves room for oversight and error; the overhead of
maintaining a system-wide map of the robot’s state may cause problems (whilst
maintaining the SOM is unlikely to be computationally expensive, the gathering
of its input data from all over the robot could be problematic); and last but by
no means least, it is not yet clear how such an innate system might fit into a full
multi-layer artificial immune system for a robot. Apart from the obvious next
step (implementing the system as described on a real robot), a pressing piece of
future work will be identification of how this might be achieved.

It is also interesting to consider the effect of the system on the combination
of task achieving behaviour and survival behaviour. Whilst the mechanism here
does not explicitly address this (potential) conflict, it does provide an interesting
possibility when combined with the neuro-endocrine control systems described
above and elsewhere. The “soft” switching, suppression and promotion of be-
haviours is precisely what this conflict requires in order to achieve the sorts of
complex trade-offs that are observed in nature. The addition of an inflammation
based driver for such behaviour mediation provides an additional homogeneous
driver specifically for maintenance of homeostasis. This is an important step
forward as it provides a truly integrated mechanism for promotion of survival
behaviours within task achieving robot systems.
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Abstract. In this paper we outline initial concepts for an immune in-
spired algorithm to evaluate price time series data. The proposed solu-
tion evolves a short term pool of trackers dynamically through a process
of proliferation and mutation, with each member attempting to map
to trends in price movements. Successful trackers feed into a long term
memory pool that can generalise across repeating trend patterns. Tests
are performed to examine the algorithm’s ability to successfully identify
trends in a small data set. The influence of the long term memory pool
is then examined. We find the algorithm is able to identify price trends
presented successfully and efficiently.

1 Introduction

The investigation of time series data for analysis and prediction of future in-
formation is a popular and well studied area of research. Historically statistical
techniques have been applied to this problem domain, however in recent years
the use of evolutionary techniques has seen significant growth in this area. Neu-
ral networks [6] [13], genetic programming [7], and genetic algorithms [3] are all
examples of methods that have been recently applied to time series evaluation
and prediction.

However the use of immune inspired (IS) techniques in this field has remained
fairly limited [9]. IS algorithms have been used with success in other fields such
as pattern recognition [2], optimisation [5], and data mining [8]. In this paper we
propose an IS approach, using trackers to identify trends in time series data, and
take advantage of the associative learning properties exhibited by the natural
immune system.

The time series proposed for investigation in this paper is that of price move-
ments (Section 2) and the approach used to identify trends in price data is
inspired by the immune memory theory of Dr Eric Bell [1]. His theory indicates
the existence of two separately identifiable memory populations which are ide-
ally suited to recognise long and short term trends prevalent in time series data.
In Section 3 we discuss this immune memory theory and introduce other im-
mune mechanisms which form part of our algorithm. The algorithm itself is then
presented in Section 4. The methodology for testing the algorithm, the results
and discussions of the results are documented in Sections 5, 6 and 7 respectively,
before concluding in Section 8.

H. Bersini and J. Carneiro (Eds.): ICARIS 2006, LNCS 4163, pp. 362–375, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Price Trackers Inspired by Immune Memory 363

2 Analysis and Representation of Price Trends

In our approach price data is converted to price movements over time and pre-
sented to the system as an antigen. The change in price at time ti is calculated as
the closing price at time ti less that of ti−1. Price movements are then banded to
simplify classification. For example a price rise between $0 and $1 is categorised
as a $1 price rise and stored as the antigen Ag = [1]. The classification bound-
ary (in this case 1) can be altered as required depending on the level of detail
needed in the evaluation. Price movements are then stored in chronological or-
der within a vector representing the antigen. The antigen provides a historical
record of price changes over a particular period. The objective of our algorithm
is to identify the trends prevalent within that antigen.

A trend ‘T’ is defined as a sequence of continuous price changes, whose
length exceeds one, that are seen to repeat at least once within the antigen.
This paper provides a proof of concept that such a trend detection mechanism
is possible.

3 Development of Long and Short Term Memory

The flexible learning approach offered by the immune system is attractive as
an inspiration but without an adequate memory mechanism knowledge gained
from the learning process would be lost. Memory therefore represents a key
factor in the success of the immune system. A difficulty arises in implementing an
immune memory mechanism however, because very little is still known about the
biological mechanisms underpinning memory development [11]. Theories such as
antigen persistence and long lived memory cells [10], idiotypic networks [4], and
homeostatic turnover of memory cells [12] have all attempted to explain the
development and maintenance of immune memory but all have been contested.
The attraction of the immune memory theory proposed by Dr Eric Bell is that
it provides a simple, clear and logical explanation of memory cell development.
This theory highlights the evolution of two separate memory pools, ‘memory
primed’ and ‘memory revertant’ [1], see Figure 1.

Antigen presented by dendritic cells in the lymph node causes naive cells
to undergo blast transformation and become activated, increasing proliferative
capacity, and responsiveness but becoming short lived in the process due to their
instability. This rapidly expanding population forms the short lived memory
primed pool. The purpose of this growing pool is to drive the affinity maturation
process to cope with the huge diversity in the potential antigen repertoire. These
cells migrate to the periphery in an attempt to interact with further antigens.
If antigen contact is achieved the memory primed cells terminally differentiate
into effector cells to counter the antigen, after which point they die.

The high rate of apoptosis of memory primed cells means most will die dur-
ing circulation of the periphery, however a small minority that fail to achieve
secondary antigen exposure do survive and return to the lymph node to reach
a memory revertant state. These cells down-regulate cytokine production and
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Fig. 1. Immune memory development [1]

apoptotic pathways and revert back to a naive like state. The key difference
to naive cells however is that these revertant cells are able to homeostatically
turnover, producing clones to sustain knowledge of an antigen experience over
the long term. These two distinct memory pools, and the transfer mechanism
between them, represent a key difference to other memory theories, and prove
the inspiration for memory development in our algorithm.

In our solution the equivalent of the short term memory pool is generated
using a derivative of the popular clonal selection algorithm [5] which proliferates
all successfully bound candidates. The short term memory pool evolves through
a special form of mutation, and is regulated through apoptosis. Successful candi-
dates from the short term memory pool then transfer to the long term memory
pool for permanent storage. This pool can then be utilised during future antigen
presentations to aid in identification. These mechanisms are discussed in detail
in Section 4.

4 An Immune Inspired Trend Evaluation and Prediction
Solution

The pseudo code for the proposed Trend Evaluation Algorithm (TEA) is detailed
in Program 1. Each of the significant operations in the TEA is then described
in the subsequent sections. All parameters noted in these sections have been
chosen using educated guesses based on previous experience, no formal sensitivity
analysis has been performed to date but will form part of our future work.

4.1 Tracker Pool Construction and Initialisation

The TEA comprises a population of individual ‘trackers’ whose purpose is to
identify the price trends located within an antigen. Each tracker is a vector
consisting of multiple price change estimates, much like the antigen. The price
estimates are generated using a Gaussian distribution and converted to price
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Program 1 . TEA Pseudo Code

Convert oil price data to form antigen ‘Ag’
Generate naive tracker pool ‘TP’
For generations 1 to N
{

Present Ag to each tracker ‘Ti’
Calculate affinity ‘AF’ between Ag and Ti
Identify optimal match sequence ‘MS’in Ti
Calculate stimulation factor ‘SF’ of MS
Calculate match length ‘ML’ of MS
If (AF < bind threshold) && (SF or ML > previous SF, ML values)
{

Clone Tracker in proportion to ML
Determine mutation mechanism & mutate clone
Add clones to TP

}
Identify long term (LT) memory candidates from TP
Transfer successful candidates to LT memory pool
Apoptose TP

}

categories. The initial tracker pool is set at 20 trackers and the length of each
tracker is randomly generated on initialisation to contain between one and four
price estimates.

4.2 Antigen Presentation and Tracker Binding

The algorithm runs for 50 generations. During each generation the latest price
change value is calculated and provided to the TEA and added to the current
antigen. In generation ‘n’ the TEA will obtain the nth price change value and
present it, along with all previous price values, as an antigen to the current
tracker population.

The affinity between the antigen and each tracker is calculating as the numer-
ical difference between the price values in the antigen and the tracker. A bind
threshold of zero produces a continuous set, or sub-set, of the tracker that iden-
tically matches a part of, or the whole of, the antigen. All possible continuous
permutations of the tracker are assessed against the antigen to find the longest
matching sequence ‘MS’ between the two entities. For example, given antigen A1
[0.5, 1, 2] and tracker T1 [1, 2, 1], the MS would be [1,2] after all permutations
of T1 and A1 were investigated.

During the binding process the stimulation factor ‘SF’ for the current MS is
determined. This corresponds to the number of times MS is seen to repeat within
the antigen. The match length ‘ML’ of the tracker is calculated as the length of
MS. If SF and ML both exceed 1 then the MS represents a recurring trend within
the antigen and that tracker is flagged as a candidate for proliferation. To avoid
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excessive population growth, proliferation candidates only undergo proliferation
if their SF or ML values exceed those attained in the previous generation. The
tracker is seen to have improved its fitness to an antigen trend (in terms of length
of match, or frequency of occurrence) and as such is cloned.

4.3 Proliferation and Mutation

All trackers that meet the proliferation criteria are cloned, forming the short term
memory pool theorised in Section 3. The number of clones generated during a
match is proportional to the ML for that match. This was decided because a
proliferation mechanism, using ML as a driver, in conjunction with the mutation
mechanism, encourages successful trackers to evolve and lengthen to match ever
longer trends.

Clones undergo mutation within the TEA in one of two unique forms, selected
randomly with a probability of 0.5.

– Mutation by Extension: Here a new price estimate is generated randomly
using a Gaussian distribution and added to the end of the clone.

– Mutation by Shortening: Here a randomly selected price estimate within
the tracker is eliminated.

Extension mutation allows the clone, whose parent was a successful match
to a trend, to anticipate the next price movement in that trend. The tracker
clone evolves to increase the length of it’s MS as it tries to detect longer and
more complex price trends. During the binding process some trackers will contain
redundant price information. Redundant price information is defined as any price
values within the tracker that are not included in the MS of that tracker. The
shortening mutation permits the trackers a random chance to rid themselves of
redundant information and improve the accuracy of the resulting memory pool.

4.4 Long Term Memory Transfer

During each generation all trackers undergoing proliferation become candidates
for entry into the long term memory pool. Trackers that have a MS not recorded
in the memory pool will automatically be transferred into the pool for preser-
vation. Candidates with a MS identical to that of one of the memory trackers
will only replace that memory if they contain less redundant information than
that memory tracker. The memory pool thus reflects the most efficient matching
trackers in the population up to that point in time.

4.5 Apoptosis

To ensure the tracker population returns to a stable equilibrium 10% of the
current tracker population is selected at random and eliminated. Both high and
low affinity trackers have the same probability of death. If the population falls
below its minimal limit of 20 the remaining population will automatically clone
to repopulate the pool, reflecting homeostatic turnover observed in nature.
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To reflect the instability and high death rate prevalent in the short term
memory pool clones are eliminated five generations after their creation if they
do not improve on their affinity to an antigen trend. This ensures excessive
population growth is carefully regulated and a return to a stable population
level soon after antigen presentation ceases.

Reviewing the mechanisms within the TEA one can see a close similarity
exists to algorithms such as CLONALG [5], however a number of notable dif-
ferences exist. Compared to CLONALG apoptosis occurs across all population
members in the TEA, not just the lowest affinity members. In addition, due to
it’s specialised nature, mutation in the TEA is not directly related to affinity fit.
TEA also proliferates all bound trackers to form the short term memory pool,
encouraging diversity in the search space. The process in CLONALG is more eli-
tist, as only the ‘n’ fittest population members are proliferated and mutated, and
from these only the best fitting clone becomes a memory candidate. All remain-
ing clones are eliminated. In essence CLONALG skips the short term memory
pool stage as it looks to find the best fitting candidate using the minimum of
resources. In comparison the TEA maintains the population of clones in order
to match and anticipate patterns arising in the data fed live to the system.

5 Testing Methodology

5.1 Methodology

In order to test the ability of the TEA to identify trends in a data series, a simple
antigen ‘A’ was constructed. ‘A’ contains 20 fictitious price movements, and 8
trends, T1 to T8. These represent the complete set of trends in A in accordance
with the definition described in Section 2. The antigen and trends T1 to T8 are
listed in Table 1.

To assess the ability of the TEA to associate new novel antigen with those
experienced during past presentations we split antigen A at the mid point into

Table 1. Antigen data sets with observed trends

Antigen Price Movements
A [ 1, 2, 1, -0.5, 1, 2, 1, 0.5, -0.5, 0.5, 2, 1, 2, -0.5, 2, 1, 2, -0.5, 1, 1.5 ]
A1 [ 1, 2, 1, -0.5, 1, 2, 1, 0.5, -0.5, 0.5 ]
A2 [ 2, 1, 2, -0.5, 2, 1, 2, -0.5, 1, 1.5 ]

Trends
T1 [ 1, 2 ] - seen in A, A1 and A2
T2 [ 1, 2, 1 ] - seen in A and A1
T3 [ 2, 1 ] - seen in A, A1 and A2
T4 [ 1, 2, -0.5 ] - seen in A and A2
T5 [ 2, -0.5 ] - seen in A and A2
T6 [ 2, 1, 2 ] - seen in A and A2
T7 [ 2, 1, 2, -0.5 ] - seen in A and A2
T8 [ -0.5, 1 ] - seen in A
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two subsets A1 and A2, both of length 10. A1 represents the training data set
from which the TEA will develop a long term memory of trends associated with
A1. A2 represents the testing data set which the TEA will have to examine in
the light of information preserved from the experience of A1.

A1 contains three simple trends, T1, T2 and T3. They are closely related,
in terms of the price movements they contain, so presenting A1 to the TEA
represents a simple challenge to ensure the TEA operates correctly.

A2’s purpose is to test the ability of the TEA to handle a more complex
antigen with more diverse trends. A2 comprises 6 trends, T1 and T3 as were
noted in A1, in addition to four new trends T4 to T7. Compared to A1 we have
increased the number of trends from three to six and increased their length and
diversity, making it more difficult for the TEA to find all the trends in A2.

It is hypothesized that although trends T4, T5, T6 and T7 are more com-
plex to identify from knowledge of A2 alone, after experiencing trends T1, T2,
and T3 from A1’s presentation, which are related to T4 to T7, the TEA should
develop some form of association between the trends leading to an easier recog-
nition of these new patterns. To test this hypothesis we define the following 4
experiments.

In experiment 1 the training set A1 will be presented to the TEA from gener-
ations 1 to 10. The testing set A2 is then presented to the TEA from generations
30 to 40. The TEA is run for 50 generations and the experiment repeated and
results averaged across 10 runs. The frequency of detection of trends T1 to T7 is
recorded across all runs. To give a base line comparison where there is no mem-
ory in the system experiment 1 assumes no knowledge of A1 is carried forward in
the TEA during A2’s presentation. At the point of A2’s presentation the tracker
population is replaced by the random tracker population created in generation
0. The TEA therefore has to learn to recognise trends in A2 from scratch.

Experiment 2 investigates the impact of incorporating feedback from the long
term memory pool into the TEA. We repeat the previous experiment, but the
tracker population at generation 30 is repopulated using clones from the long
term memory pool. We identify whether any association properties become ap-
parent in the TEA by examining the frequency with which the trackers in
the long term memory pool have detected the trends in A2 as compared to
experiment 1.

Experiment 3 investigates the issue of scalability in the TEA. Experiments 1
and 2 present antigen sub sets of only 10 data items at a time. We now scale
up the information presented to evaluate the impact on the TEA’s performance.
Experiment 3 presents the complete antigen A to the TEA from generation 1 to
20, doubling the size of the information presented. Results in terms of population
sizes, trend detection rates and memory pool efficiency are then to be compared
with experiments 1 and 2.

Experiment 4 compares the performance of the TEA against a random search.
Each tracker generated during execution represents a potential search solution;
given the high population levels anticipated in the TEA one could argue that a
large randomly generated tracker population would also succeed in identifying
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the trends prevalent in an antigen. Experiment 4 generates a random population
of trackers, whose size is approximately equivalent to the population levels gen-
erated during experiments 2 and 3 to examine whether the TEA performs better
than a random search in terms of trend detection rates and memory efficiency.

5.2 Performance Evaluation

The results of the TEA are evaluated as an average across 10 runs. The perfor-
mance of the algorithm is assessed using two measures i) the number of trends
identified against the maximum available for detection and ii) the efficiency of
the trackers in the long term memory pool to map to the trends. Efficiency
can be measured as the number of price change values included in the memory
tracker that are not contained within the match sequence ‘MS’. For example if
the trend to be found was [2.0, 2.5] and the best fitting tracker was [2.0, 2.5,
3.0] the price value 3.0 within the tracker is redundant given the MS of [2.0,
2.5]. The degree of efficiency, or to be more precise inefficiency, would therefore
be calculated as 1 over 3, or 33%. The TEA was written in C++ and run on a
windows machine with a Pentium M 1.7 Ghz processor with 1.0 Gb of RAM.

6 Results

The results of experiments 1 to 3 are discussed in the following sections and
are listed in Table 2 whilst those of experiment 4 are found in Table 3. TEA
execution times varied from approximately 40 to 50 seconds for experiments 1
and 2, and 7 to 8 minutes for experiment 3.

Table 2. Detection rate and memory efficiency results

Trend Detection Frequency

Experiment T1 T2 T3 T4 T5 T6 T7 T8 Total Detection Rate

1 10 10 10 6 2 1 0 n/a 39 55.7%
2 9 9 10 9 9 7 3 n/a 56 80.0%
3 10 10 10 10 9 10 8 10 77 96.3%

Redundant memory values

Experiment T1 T2 T3 T4 T5 T6 T7 T8 Total Inefficiency Rate

1 0 2 0 0 0 1 0 n/a 3 3.2%
2 0 0 0 0 0 2 1 n/a 3 2.1%
3 0 0 0 0 0 0 1 3 4 2.0%

6.1 Experiment 1. No Long Term Memory Pool Interaction

In accordance with Section 5 A1 was presented to the TEA from generations 1
to 10. The tracker population at generation 30 was replaced by the randomly
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generated tracker population from generation 1. A2 was then presented from
generations 30 to 40. Figure 2 illustrates the total tracker population in response
to these presentations, whilst Figure 3 shows the population of trackers that
specifically match trends T1 to T7.

Fig. 2. Total Tracker and total matching tracker populations with no memory feedback

Regarding the presentation of A1, Table 2 shows the TEA is able to identify
and develop memory trackers that map with 100% success to trends T1, T2 and
T3 for each of the 10 runs. There are no redundant price values in the memory
pool resulting in 100% memory efficiency. However the TEA is less successful in
indentifying trends T4 to T7 from the subsequent presentation of A2.

The secondary response in Figure 2 is minimal because no memory of the
trends from A1 are carried forward in the system, resulting in the TEA having
to relearn the trends presented. This led to a poor mapping to A2’s trends due
to their increased number and complexity.

Trends T1 and T2 were again recognised within A2 and the new trend T4
was identified with 60% success across the 10 runs, however the remaining trends
(T5, T6 and T7) were only rarely detected. In total 39 (55.7%) of the 70 possible
trends were found across the 10 runs, with 3.2% memory inefficiency.

6.2 Experiment 2. Long Term Memory Pool Interaction

In this experiment the tracker population is replaced with clones from the mem-
ory pool in generation 30. This provides the potential to learn from the trends
memorised in response to A1, to create associations with the novel trends in
A2. Table 2 shows feedback from the memory pool has a significant impact on
the performance of the TEA compared to experiment 1. The total number of
trends now mapped by memory trackers increases by 43.6% to 56 trends, giving
a detection rate of 80% compared to the previous coverage of 55.7%. The TEA
is now able to consistently detect trends T4, T5, and T6 and even manages to
identify the elusive T7 with a 30% success rate. Memory inefficiency fell to 2.1%
with 3 redundant price values included in the memory population.
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Fig. 3. Trackers matching trends T1 to T7 with no memory feedback

It should be noted however that due to apoptosis during run 4 of the experi-
ment a number of important trackers were eliminated before they had a chance
to bind. This resulted in the TEA failing to detect 6 of the 7 available trends in
this run. Omitting this unusual occurrence from our analysis would have boosted
the current 80% detection rate to 87%.

Fig. 4. Total Tracker and total matching tracker populations with memory feedback

Figures 4 and 5 show the total tracker population levels and tracker popula-
tions that match the specific trends T1 to T7. Figure 4 shows a more pronounced
secondary response to A2 compared to that in Figure 2, with the maximum
population rising to 191 trackers compared to that of 44 in experiment 1. Look-
ing at the population of trackers that map to specific trends (Figure 5) we see
evidence of stronger responses to the trends in A2, as seen in Figure 3. Thus
knowledge of the trends seen from A1’s presentation have improved the TEA’s
recognition of new, novel trends that have some association with those previously
seen. This leads to the 43.6% improvement in trend detection.
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Fig. 5. Trackers matching trends T1 to T7 with memory feedback

This experiment was repeated to examine the impact of removing the short-
ening mutation function from the TEA. Considering presentation of A1 the
tracker population levels reached a slightly higher peak of 218 compared to 191
with no shortening, however the impact on the quality of the memory pool was
significant. Whilst the TEA’s detection rate for trends T1 and T2 varied insignif-
icantly, without shortening the detection rate for T3 fell from 100% to 10%, T3
was undetected in 9 of the 10 execution runs. Of more concern was the fact that
the resulting memory pool contained 33 redundant price values compared to the
100% memory efficiency found through using mutation by shortening. It is clear
that the shortening mutation is vital for the proper performance of the TEA.

6.3 Experiment 3. Antigen Scalability

To assess scalability antigen A was presented to the TEA from generations 1
to 20. Scanning A we see a new trend T8 becomes apparent when we combine
subsets A1 and A2. Detection of this trend would not be possible in any of the
previous experiments because its occurrence in A1 and A2 does not satisfy the
definition of a trend in those individual sub sets. This highlights an issue with
the approach as the point of split in the antigen has an impact on the potential
number of trends to be detected in the sub parts of that antigen, this issue is
addressed later.

The tracker population reaches a maximum of 2,244 trackers compared to the
maximum population in experiment 2 of 323. The memory pool created is able
to successfully map to 77 of the 80 possible trends across the 10 runs (96.3%
coverage). The TEA failed to find T7 twice and T5 once. Memory inefficiency
dropped to 2% as 4 excess price values were noted in the memory pool.

6.4 Experiment 4. Comparison with Random Search

From experiments 2 and 3 approximately 1,000 and 4,000 trackers respectively
were generated by the TEA in order to generate the memory pool of solutions.
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To compare the results of experiments 2 and 3 with a random search, a random
population was generated consisting of 1,000, 4,000, 10,000 and 20,000 trackers.
Given the longest trend (T7) has four price values, and can be found by the
TEA with no data redundancy, each random tracker had a randomly determined
length between one and four. The randomly generated population would then be
mapped to antigen A, and the memory trackers compared to those of experiments
2 and 3 to see whether the TEA can outperform a purely random search. Results
are shown in Table 3, ticks indicate the trend was found, crosses indicate the
trend was not detected.

Table 3. Trends detected using a random search

Analysis of Trends Detected

Pop Size T1 T2 T3 T4 T5 T6 T7 T8 Total

1,000 ✓ X ✓ X ✓ X X n/a 3
4,000 ✓ ✓ ✓ ✓ ✓ X X ✓ 6
10,000 ✓ ✓ ✓ ✓ ✓ ✓ X ✓ 7
20,000 ✓ ✓ ✓ ✓ ✓ ✓ X ✓ 7

With a randomly generated population of size 1,000 only 3 of the 7 trends T1
to T7 were detected. The random search failed to find trends T2, T4, T6 and
T7. In comparison, during experiment 2 the TEA found 6 trends consistently,
missing only T7 70% of the time. The detection rate of the TEA is twice that
of the random search with just 1,000 trackers.

With 4,000 random trackers 6 of the 8 trends are found, trends T6 and T7
were undetected by the random search. Increasing the random population size to
10,000 trackers, 7 of the 8 trends are detected as T6 is now found. The random
search fails to find T7, even if we increase the tracker population to 20,000. This
contrasts to experiment 3 where the TEA, with only 4,000 trackers, can generate
a memory pool that detects T1, T2, T3, T4, T6 and T8 every time across all 10
runs, and T5 and T7 9 and 8 times out of 10 respectively. The TEA therefore
outperforms a random search.

7 Discussion

From experiment 1 it is seen that the TEA can evolve a population of trackers
that generate a memory pool able to successfully map to trends in a simple data
set (such as A1) with 100% accuracy and efficiency. Increasing the number and
complexity of the trends to be found, as was achieved through the presentation
of A2, causes the algorithm to struggle to identify these potential trends.

Without knowledge of the trends from A1 being carried forward in the system,
detection rates of the TEA to the more complex trends falls significantly. This
can be corrected in the TEA by increasing the degree of proliferation to raise
the detection rate in the system. But what is of interest to us in this paper
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is whether the TEA can learn, through feedback from its long term memory
pool, to associate what it has memorised from previous experiences to aid in
the investigation of new novel antigen. Comparing the results of experiments 1
and 2 we see incorporation of the memory pool has a beneficial effect on the
ability of the TEA to map to and memorise trends in a more complex antigen.
Compared to its naive counterpart the inclusion of the long term memory pool
boosts trend recognition from 55.7% to a potential 87.%, whilst inefficiency in
the memory pool is kept consistently low at 2.1%.

The reason for this improvement can be seen if we view the trends within
the antigen subsets A1 and A2, as shown in Table 1. Trends T1, T2 and T3,
located within A1, have price change combinations involving rises of $1 or $2.
Recognition and development of memory trackers associated with these trends
would assist the TEA in identifying trends T4, T6 and T7 in A2 as they too
have price combinations that involve price rises of $1 and $2. If memory trackers
can be successfully evolved to map to these trends during presentation of A1,
as was shown in experiment 2, then the TEA can utilise that knowledge and
associate new novel trends with those already seen, instigating a more successful
response. Without the ability to associate new experiences with past knowledge
the performance of the TEA declines significantly, as expected.

Although the antigen investigated here is very small and simplistic, it is im-
portant for the TEA to scale to handle larger antigens. Experiment 3 gives us an
indication of the scalability of the system as antigen sizes increase. Comparing
test experiments 2 and 3 we see increasing the antigen size by 100% from 10
to 20 causes the maximum tracker population to increase from 323 trackers to
2,244, leading to an exponetial growth problem. Splitting antigen A into it’s two
component parts, as done in experiment 3, results in significantly lower popula-
tion sizes whilst still maintaining a high detection rate. This is only possible if
we carry forward the long term memory pool and feed it back into the tracker
population to assist in future antigen recognitions. In this way we can avoid the
scalability issue whilst maintaining a high degree of accuracy in the TEA.

However, from test 3 it was evident that separating antigen A at the mid point
results in trend T8 now not being recognised as a trend within the component
parts A1 and A2. T8 exists within A1 and A2 but is not repeatedly stimulated so
has a SF of 1, therefore it does not conform to the definition of a trend in either
A1 or A2. To avoid this issue the algorithm could be re-run with alternative split
points to generate an overall memory pool; this will be investigated in future
work. From analysis in experiment 4 we can also conclude that the TEA performs
significantly better than a random search in identifying trends prevailing in a
small data set.

8 Conclusion

This paper presents an immune inspired algorithm that is successful in identify-
ing trends in a small simple data set. The authors theorise that these techniques
can be expanded and applied to larger time series data sets to identify trends
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over time. Potential scalability issues can be addressed by breaking the data
into more manageable subsets, so long as memory generated from previous pre-
sentations is fed back into the TEA prior to new data presentation. Using this
approach the algorithm can learn through association from past experiences to
maintain a high success rate in detecting and recording prevalent trends.
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Abstract. Theoretical basis of Novelty Detection in Time Series and its relation-
ships with State Space Reconstruction are discussed. It is shown that the 
methods for estimation of optimal state-space reconstruction parameters may be 
used for the estimation of immunological novelty detection system’s para-
meters. This is illustrated with a V-detector system detecting novelties in 
Mackey-Glass time series. 

1   Introduction 

Novelty Detection in Time Series (NDinTS) problem is a time-sensitive version of a 
general Novelty Detection (ND) problem known also as Anomaly Detection. Many 
different formulations of this problem exist in the literature, including both the time-
sensitive [10, 11] and time-insensitive version [6, 14]. They all have three common 
elements: (1) problem space, with the finite or infinite number of elements; (2) input 
data, which is a set of elements that belongs to the normal class; (3) result, which is a 
mapping that classifies all elements as normal or novel. Therefore, Anomaly 
Detection can be seen as a two-class classification problem, in which only the 
examples from one class are available for the training [6]. The typical solution relies 
on the model of known normal data, a distance measure and a threshold value to 
decide whether the element is normal or novel. A wide review of existing approaches 
can be found in [1]. 

The problem of Novelty Detection in Time Series was also approached using the 
Artificial Immune Systems based on the Negative Selection Algorithm (NSA). This 
approach, as many others, utilizes the sliding window procedure [10, 11, 12, 14, 15, 
16, 19] to reduce the problem to a time-insensitive variant. Theoretical analysis of this 
procedure shows, that it is an equivalent to the Method of Delays (MOD) – a well 
known procedure in the domain of system’s dynamics reconstruction. It is then 
possible to find sliding window’s parameters using existing methods for estimation of 
optimal reconstruction parameters. 

The rest of this paper is organized as follows. In section 2 the formal definitions of 
Novelty Detection and its time-sensitive variant are introduced and also the NSA based 
approach and sliding window procedure are defined. Section 3 is a short introduction 
to the analysis of dynamical systems and state space reconstruction. Basing on this it is 
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shown that the sliding window procedure and MOD are equivalent, and also the well 
known methods of state space reconstruction parameters estimation are discussed. In 
section 4 the results of V-detector novelty detection system on Mackey-Glass time 
series are presented and discussed. The summary is presented in section 5. 

2   Problem Definition 

To be able to define the NDinTS, the general ND problem must be defined first. 
 
Def. 1. The problem space P is a space containing all elements subject to 
classification by novelty detection system. 
 
Def. 2. A problem’s element is any element e that belongs to the problem space P. 
 
Def 3. The classification mapping is a mapping classify:P→{normal, novel}, that 
assigns each element of the problem space to with one of two classes: normal, novel. 1 
 
Def. 4. The normal subspace P- is a set of  elements classified as normal 
P- = df {e∈P| classify(e) = normal}. 
 
Def. 5. The novel subspace P+ is set of  elements classified as novel  
P+ = df {e∈P| classify(p) = novel} . 

 
The problem can be formulated as follows: given a subset S of a normal subspace 

P-, estimate the classification mapping. As it was stated in Section 1, the common 
approach is based on a model of normal data. It can be informally defined as follows: 
 
Def. 6. A model MX is a finite mathematical representation of systems behavior given 
by a set of problem’s elements X. MX∈M . 
 
Def. 7. A misfit function F(M,e) is a function F:M×P→R that determines how much 
the element e does not fit into the model M. 
 
Def. 8. A novelty detection system NDS is an ordered triple (F, MS, p), such that: 
F is a misfit function, MS is a model of input data set S, p is a misfit threshold value. 
 
Def. 9. An estimated classification mapping classify_est(NDS, e) is a mapping defined 
as follows2: 

( ) ( )
( ) ≥

<
=

peMFiffnovel

peMFiffnormal
eNDSestclassify

S

S
df ,

,
,_  

                                                           
1 In the Artificial Immune Systems nomenclature, the classes and the following subspaces P- 

and P+ sets are usually named Self and Non-Self. 
2 There are also other definitions of classification mapping that allows more then one level on 

novelty or even a non-crisp discrimination. 
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2.1   Novelty Detection in Time Series 

Considering the problem of NDinTS it is common to perceive the source of data as a 
dynamical system with unknown dynamics. The input data are available in the form 
of series of values gathered in consecutive time moments.  

 
Def. 10. A (univariate) discrete time series X is a series of values  generated by some 
dynamical system in consecutive time moments labeled with natural numbers.  
X: x0, x1,… , xN. 
 
Sliding Window Procedure. To reduce the problem to a time-insensitive variant a so 
called sliding window procedure is used. This procedure has three integer parameters: 
window length m; observation delay τ and offset Δ and as a result it produces a set of 
observations. 
 
Def. 11. An observation xt,m,τ  is a vector of m consecutive values of a series of every 
τ-th value taken from X starting from moment t: xt,m,τ =df  (xt, xt+τ, …, xt+(m-1)τ) 
 
The offset parameter does not influence the observation itself, but defines how far the 
“window” is moved to generate another observation. If xt,m,τ, is the current 
observation, then the next observation is xt+Δ,m,τ . 

Novelty. A novelty can be informally defined as every observation in the tested time 
series B that is surprising given to the fact that B has been generated by the same 
system as some exemplary series A. The concept of “surprise” is being formulated in 
different ways in literature, depending on the considered problem and approach. The 
most commonly used approach relies on the reduction of problem to the time-
insensitive version.  
 
Def 12. A set of available observations ObsX,m,τ is a set of every m-sized observations 
with a delay of τ in time series X: 

{ }
10

,,,,
+−≤≤

=
mNt

mtdfmX xObs ττ  

We can then define the NDinTS as a ND problem in which the problem space is a 
space of all m-sized observations and input data τ,,mAObsS =   

2.2   Evaluation of Results 

The estimated classification mapping introduces a separation of the problem space P 
onto two distinct subspaces PNDS+, PNDS-, where PNDS+ = df {e∈P|classify_est(NDS, e) 
= novel} and PNDS- = df {e∈P|classify_est(NDS, e) = normal}. The optimal result is the 
one in which this separation is equal the one introduced by classify, so the following 
must be met:  

Cond. 1. PNDS- = P-  (which is equivalent to PNDS+ = P+) 

Def. 13. A perfect novelty detection system NDS* is a novelty detection system for 
which the condition 1 is true.  
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From the Condition 1 we have PNDS*- = P-, but S ⊆ P-, so the following is an essential 
condition for a perfect novelty detection system: 
 
Cond. 2. PNDS*- ⊇ S 

 
It is then clear that the perfect novelty detection system requires PNDS*- to be a 
superset3, of the given set of normal elements S. In general the separation of P 
resulting form classify and classify_est mappings are not identical. Two types of 
classification errors can be identified: type 1 – false positives and type 2 – false 
negatives. They are expressed by two factors, error_rate (also known as 
false_alarm_rate) and reject_rate defined as follows: error_rate = FN/TP+FN; 
reject_rate = FP/TN+FP, where: 
FP is the number of elements e for which: classify(e)=normal ∧ classify_est(e)=novel 
FN is the number of elements e for which: classify(e)=novel ∧ classify_est(e)=normal 
TP is the number of elements e for which: classify(e)= classify_est(e)= normal 
TN is the number of elements e for which: classify(e)= classify_est(e)= novel 

To compare any two detection systems ROC curves are commonly used. They 
present the effect error_rate on reject_rate or the effect of false alarm rate on 
detection_rate=1-reject_rate. 

2.3   Immunological Approach to ND 

Artificial Immune Systems (AIS) follows the paradigm of natural immune system 
(NIS) [13] which works as a natural self – non-self discrimination system. Therefore 
Novelty Detection is one of the major areas of AIS application [17]. There were also 
few attempts to apply them to a NDinTS problem [10, 11, 12, 14, 15, 16, 19]. Of a 
special interest are the systems based on a Negative Selection Algorithm (NSA), 
proposed in the first, so called naïve version by Forrest et al. in [9].  

The NSA based immunological novelty detection systems use the negative 
characterization scheme, which means that the model M is focused on representing 
not the input data S itself, but its complement. Due to the imperfect nature of model 
the two approaches are not equivalent [4]. A comprehensive analytical comparison of 
positive and negative characterization schemes may be found in [4, 5], for 
experimental comparisons see [15, 47]. There is a dispute whether the negative 
characterization is a proper approach to AD/ND [17]. It is being criticized in [2, 47, 
48]. The major drawbacks mentioned are high dependability on parameters values and 
high computational cost. In [3] a response to these charges is given with the 
suggestion that choosing proper values of parameters reduce the computational 
complexity to linear. 

Leaving this dispute apart in the rest of this work the negative characterization 
based immunological system is discussed. The complement of input data set S is 
modeled with a set of so called detectors. 
 
Def. 14. An immunological model MIMM is a set D of detectors: 
MIMM = df D, where D =df {d1, d2,…, dk} 

                                                           
3 This superset can be regarded as a generalization of S. 
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Def. 15. A detection area DetArea(d) of a detector d is a set of problem elements that 
are detected by d. 
 
We say that a detector d detects a problem element e (denoted by dme) iff. e belongs 
to a detection area of d. A set of detectors D detects a problem element e (denoted 
Dme) iff. e is detected by a detector d that belongs to D. This can be stated using 
mathematical notation as: dme ⇔ e∈DetArea(d), Dme ⇔ ∃d∈D⋅dme . 

 
Def. 16. An immunological model’s misfit function FIMM is a function defined as 
follows: 

( )
¬

=
eD

eD
eMF df

IMMIMM

m iff.0

 m iff.1
,  

Def. 17. An immunological novelty detection system NDSIMM is an ordered triple 
(FIMM, MIMM, 1). 

 
By setting novelty threshold to 1 it is granted that the elements detected by D are 
classified as novelties. 

Sliding Window Procedure Parameters. For an NDinTS problem the source of data 
is a system with an unknown dynamics. In the most known immunological 
approaches the following systems were used: a cutting machine [10, 12, 16], a 
refrigeration system [11] an aircraft system [19] and a computer network [14, 15]. In 
the above mentioned works the parameters of sliding window procedure were 
established in an arbitrary manner and in some of them the values were not reported. 
In [10, 12] only 5 and 7 were used for window length. In [11] m=5,7,8,10, but  no 
information about the delay and offset is given. In [19] there is no information on the 
window length and in [14, 15] the window length m=1 and 3. It seems then that these 
parameters do not attract the attention of the authors as much as other parameters of 
immunological novelty detection system. 

The rest of this work is a discussion on the impact of these parameters and some 
expectations following the Takens embedding theorem. This needs some introduction 
into dynamical systems area. 

3   Introduction to Dynamical Systems Analysis 

Some basic concepts must be defined first. 
Def. 18. A system’s state space or a phase space is a k-dimensional space of 
orthogonal coordinates, which represents every variables necessary to define the 
momentary state of a system. 
 
Def. 19. A dynamical system DS is an ordered pair (X, f), where X is a subset of state 
space and f:X→X is a mapping in this space. Usually X=Rk. 
 
Def. 20. A state vector or simply a state is a vector x=(x1, x2, …, xk) ∈ X.  
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The mapping f defines  the evolution of the dynamical system, by determining the 
next state  xn+1=f(xn).

 4 Te above definitions concerns the systems with discrete time 
(cascades). For continuous time systems (flows) the evolution is given by a set of k 
differential equations )(xx F= . 
 
Def. 21. A trajectory or an orbit is a series of consecutive states of a system. 

 
For a class of systems, known as dissipative systems (see [26]), the trajectory usually 
settles on a subset of state space known as attractor. 
 
Def. 22. An attractor A of a dynamical system DS=(X,f) is a bounded closed subset of 
system space A⊂X that is invariant f(A)=A and has such a neighborhood that every 
trajectory from it settles on A. 

 
From the invariant property of an attractor it follows that if the state of a system 
converges to an attractor, then every consecutive states belongs to the attractor as 
well.  

In some special occasions a dissipative dynamical system can be sensitive to a 
initial state. In these case even the smallest difference in the initial conditions gets 
strengthen in time and two close trajectories disperse quickly. Such systems are called 
chaotic [46]. The attractor of a chaotic dynamical system is usually a fractal set and 
has an non-integer fractal dimension, and is being called a strange attractor. 

An exemplary chaotic system is represented by the Mackey-Glass (MG) equation, 
introduced in [45] as a model of blood cells production. Its dynamics is defined with a 
following equation:  

( )
( )

x
tx

tx
x

MG

MG 1.0
1

2.0
10

−
−+
−=
τ
τ

 (1) 

MG system belongs to the class of delayed feedback systems [32] that are common 
for biological systems. Systems from this class have a infinite-dimensional state 
space, because to establish its initial condition a generic function over a set [-τ, 0] is 
needed. For delayed feedback systems the attractor’s dimension can by arbitrary high, 
but if the delay is small system’s dynamics is usually low-dimensional, e.g. for MG 
with τ=17 the dimension of attractor is about 2 [29]. 

3.1   State Space Reconstruction 

One of the most widely used methods for dynamic systems analysis is the state space 
reconstruction, proposed in [23] and justified on theoretical basis in [30] and [31]. It 
allows for the reconstruction of system’s underlying dynamics basing on the 
univariate time series. There are three basic approaches to state space reconstruction 
[24]: (1) the Method of Delays (MOD); (2) the derivatives method; and (3) the 
principal components method. The simplest and most popular (although not 
chronologically first) is MOD [20, 21, 22, 28, 32, 33, 34, 35]. In the method of delays 
a reconstructed system space is represented by a delay vector, defined as follows: 

                                                           
4 Assuming an autonomous system, in which  f does not depend on n. 
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Def. 23. A delay vector x(t) of an univariate time series X is a vector: 
x(t) = (x(t-(d-1)τ), …, x(t-τ), x(t)), where: d, τ - dimension and delay of reconstruction 
respectively - are the reconstruction’s parameters. 

 
In the d-dimensional reconstructed state space delay vectors form a reconstructed 
attractor. In [30] Takens formulated a theorem that if the dimension of reconstruction 
is big enough, namely bigger than twice the dimension of underlying attractor,  then 
the delay vectors form an embedding of the original system space5. This means that 
the mapping from the original attractor to the reconstructed one is one-to-one and 
reversible, so every element of the original attractor is mapped onto one element of 
the reconstructed attractor and vice-versa.  

This theorem, known as Takens embedding theorem, applies also to the attractor’s 
neighborhood. Therefore it can be said that at least in the vicinity of the attractor, the 
states that do not belong to the attractor in the original state space are mapped onto 
states that do not belong to the attractor in the reconstructed space. This is a very 
important property of an embedding as it is very closely related to the NDinTS 
problem. The connection is due to the fact that the sliding window procedure is no 
more than a state space reconstruction using MOD. To see this we must introduce the 
definition of a delay vector for a discrete time series: 
 
Def. 24. A delay vector xt,m,τ for a discrete univariate time series is a vector:  
xt,m,τ =df  (xt, xt+τ, …, xt+(m-1)τ) 

 
It is an equivalent to the definition 11, which defined on observation. It may be then 
said that: 

 
Theorem 1. If the source of a time series A is a dynamical system, which state already 
converged to an attractor, then the observations set ObsA,m,τ form a reconstruction of 
the underlying attractor in m-dimensional reconstructed state space. 

 
From theorem 1 it follows that for the observation set ObsA,m,τ applies all the 
implications of Takens theorem and its generalizations. Therefore: 
 
Theorem 2. If the window length m is big enough, so that observations set ObsA,m,τ 
forms an embedding of the original attractor, then:  
(a) the states that belongs to the original attractor are mapped onto ObsA,m,τ  
(b) the states from the original attractor’s vicinity that do not belong to this attractor 
are mapped onto the supplement of ObsA,m,τ 

 
The immunological novelty detection system detects only the elements that does not 
belong to the input data set. From Theorem 2 it follows that the supplement of input 

                                                           
5 Precisely: if the dynamical system and the observed quantity are generic, then the delay-

coordinate map from a d-dimensional compact manifold M to R2d+1 is a diffeomorphism on 
M. Generalized in [25] for a compact-invariant subset of Rk, and furthermore in [22] for a 
finite-dimensional subset of infinite-dimensional state space. 
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data set ObsA,m,τ consist of a states that do not belong to the original attractor. 
Therefore a type (1) novelties detected by a novelty detection system can be defined 
as follows: 
 
Def. 25. A type (1) novelty is a state that does not belong to the original attractor. 
 
The type (1) novelties are then caused by the change in the underlying system’s 
dynamics that causes the trajectory to diverge from the attractor. 6  

3.2   Reconstruction Parameters 

The parameters of reconstruction may be mapped directly to the sliding window 
procedure parameters. While the proper reconstruction ensures the detection of type 
(1) novelties, the Takens theorem itself, which underlies theorem 2, does not give any 
guidance on how those parameters should be fixed. Only the minimal sufficient value 
of m is given. What’s more, the assumptions for Takens theorem, which is an infinite 
series of noise free data, are unrealistic [20]. In the real problems only a finite series is 
given. This may lead to another type of novelties. 

 
Def. 26. A type (2) novelty is a state that does belong to the original attractor but is 
not observed in the exemplary time series A. 

 
While type (1) novelties are caused by change in the dynamics of the system, type (2) 
novelties are the results of not having the full information. In general to represent a 
whole attractor an infinite time series A* is needed, from which only a subseries A is 
known. From the condition 1 it follows that the perfect novelty detection in time 
series system a following must be true: 

Cond. 3. PNDS- = ObsA* 

The generalization of input data should then reconstruct a whole attractor basing on 
an observed finite series A, so that only the type (1) novelties are detected. 

Having only a finite set of imperfect data makes estimation of reconstruction 
dimension more difficult, and also makes the reconstruction quality dependant on the 
value of delay [20, 32]. Nevertheless many methods of estimating the proper 
reconstruction parameters have been  proposed. A small survey of them is presented 
in the next few paragraphs. This methods may be used to estimate the values for 
sliding window procedure parameters. 

Reconstruction delay. Commonly two limits are given for the value of τ [20]: the 
lower – so that the reconstructed attractor is expanded from the diagonal; and the 
upper – so that the attractor does not fold on itself. The most popular methods are 
based on a decorrelation (linear or general) of successive element of series [33], 
the geometrical expansion from the diagonal [28] or a mean time between peeks [20]. 
For references to works presenting other approaches like higher-order correlations, 
fill-factor, wavering products, small-window solution, see [28]. Many authors [20, 21, 
27, 28] suggest that the independent parameter that should be estimated is not the lag 

                                                           
6 Assuming that the observed system already converged to the attractor. 
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between two consecutive elements of delay vector τ, but rather the lag between the 
first and the last element τw=(m-1)τ . In particular in [28] it is shown that the 
correlation integral does depend on τw, but not on τ and m separately.  
Reconstruction dimension. The reconstruction dimension as the most important 
parameter of reconstruction attracted major attention [34, 35, 36, 37, 38, 39, 40, 41]. 
In [41] a comparison of the most popular algorithms is presented. The methods can be 
divided into three categories [35, 34]: (1) estimating the attractor’s invariant; (2) 
singular value decomposition; and (3) checking the smoothness of reconstruction.  

Methods from the first class are based on the fact that several values are attractor’s 
invariants (e.g. the correlation integral [42]) and therefore their value should be the 
same for all faithful reconstructions. Increasing the dimension of reconstruction one 
can find a minimal dimension after which the selected invariant’s value does not 
change, meaning that the reconstruction is proper. The main drawbacks of these 
methods is their sensitivity to data and the computational complexity [34].  

In singular value decomposition the orthogonal directions in the reconstructed 
space are identified and sorted according to the variance of the trajectory’s projection 
onto them [27]. Apart from its strong theoretical basis, its major advantage is higher 
tolerance of noise.  

Methods from the third class are based on the fact, that in the not faithfully 
reconstructed attractor (due to the too small reconstruction dimension) the states that 
are away in the original space can be mapped into neighbors in the reconstructed 
space. The most commonly used method is the False Nearest Neighbors (FNN) 
proposed in [37] and its variants [34, 38]. In FNN the so called false nearest neighbors 
are counted, which are the states that are neighbor in k-dimensional reconstruction but 
are not longer neighbor in k+1-dimensional reconstruction. The optimal recons-
truction dimension is then the one for which the number of false nearest neighbors 
falls to 0.7 For a justification of this approach see [39, 40]. 

The main drawback of the FFN method is the necessity to fix two subjective 
parameters, therefore it is worth noticing that in the work [34] a modification of FFN 
that does not need any parameters is given. 
Window Offset. Although this parameter does not have a typical equivalent in the 
method of delays, some suggestions may be made basing on the MOD literature. 
Setting Δ to a value other than 1 means that some of the data will not be used for the 
reconstruction. Therefore the value 1 is recommended, as most of the methods 
mentioned above are sensitive to the amount of data [34]. 

4   Experiments and Results 

In this section some results of an advanced immunological novelty detection system 
on a benchmark chaotic series are presented and confronted with the expectations 
arising from Theorem 2.   

Observed system. Mackey-Glass time series generated with the 4th order Runge-
Kutta method is used. It is assumed that τMG=17 models the normal data series A. 
                                                           
7 Or a minimal value for a noised data [43,44]. 
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Series B+ generated with τMG=20 is used to check the detection_rate. A third series B- 
with τMG=17 but for another initial condition is used to check the false_alarm_rate.  
Reconstruction parameters. The reconstruction delay parameter was set to τ=50, 
which is suggested in [20] as a mean time between peaks. The reconstruction 
dimension was estimated using the method proposed in [34] to d=5, which is 
consistent with the minimal sufficient reconstruction dimension d=2da+1 where da is 
the attractor’s dimension equal to 2 for τMG=17. 
Tested detection system. A modified version of V-detector algorithm is used to 
generate detectors. This algorithm was firstly introduced in [7] for the Anomaly 
Detection problem, and the enhanced in [8] and [18]. Its special feature is the stop 
condition, which is based on testing the hypothesis about achieving a requested 
minimal coverage of P- subspace. The only modification introduced is that the 
generated detectors are added to the resulting detector set at once. Still only n last 
tries are taken into account when testing the hypothesis as in the original algorithm. 

4.1   Experiments 

A series of experiments using the above mentioned input and test data were 
conducted, for different values of parameters rS and m. The measured values are 
detection_rate (DR), false_alarm_rate (FAR), size of resulting detectors set (DC), 
and an average detection rate (DR/DC). For all tests the parameters of V-detector: the 
required coverage p confidence level α were set to p=0,9, α=0,95. The results 
presented in figures 1-3 were averaged over 100 runs. 

4.2   Results 
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Fig. 2. The effect of window length m on the false_alarm_rate (left) and detection_rate 
(right) 

 

Fig. 3. The effect of window length m on the size of resuzlting detectors set (left) and average 
detection rate (right) 

As it can be seen on the Fig. 1, increasing the window length m results in a better 
detection. A more accurate analysis requires checking the effect of m on DR and FAR 
separately on Fig. 3. 

For a false_alarm_rate a well-defined minimum over the m=5 and 6 can be seen. It 
seems then that to minimize the type 1 detection errors the window length 
corresponding to the estimated minimal reconstruction dimension can be used. 

The detection_rate clearly increases with m. The strange local maximum for the 
dimension of 2 is probably due to the fact that the selected reconstruction delay τ=50 
is valid only for this dimension. This is because only for m=2 the window lag τw=(m-
1)τ is equal to the suggested value 50. It can be also seen that the big values of rS have 
negative effect o DR. It is caused by the effect of merging the neighbor trajectories in 
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the reconstructed state space, and is less visible in higher-dimensional spaces because 
the distance between trajectories increases with the dimension of reconstruction. 

The bottom two graphs on the Fig. 3 depicts the effect of m on the size of resulting 
detectors set (DC) and average detection rate (DC/TC). For both of them there is a 
clear optima for m=5,6,7. For these values of m the resulting set of detectors is 
smallest, and the generated detectors have the biggest average detection rate, defined 
as a ratio of DC to TC. It seems that the average detection rate is optimal for m=6 
rather than for m=5. This may be due to the fact, that the series used for calculating 
DR was generated with τMG=20. For this value the dimensionality of the underlying 
attractor is greater than 2 and the estimated optimal reconstruction dimension is 6.  

5   Summary 

The formal basis for Novelty Detection in Time Series problem and the sliding 
window procedure in particular indicates the close connection with a state space 
reconstruction method, known as Method of Delays. This encourages taking advance 
of the wide spectrum of solutions presented in the dynamical systems analysis 
literature. Especially the methods for estimation of optimal reconstruction parameters  
can be used to fix the parameters of the sliding window procedure.  

The experiments conducted for an chaotic time series showed that the estimated 
optimal reconstruction dimension coincides with the optima of several detection 
system’s characteristics. More experiments are needed to check also the effect of 
reconstruction lag. 
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Abstract. There is a list of unique immune features that are currently absent 
from the existing artificial immune systems and other intelligent paradigms. We 
argue that some of AIS features can be inherent in an application itself, and thus 
this type of application would be a more appropriate substrate in which to 
develop and integrate the benefits brought by AIS. We claim here that sensor 
networks are such an application area, in which the ideas from AIS can be 
readily applied. The objective of this paper is to illustrate how closely a Danger 
Theory based AIS - in particular the Dendritic Cell Algorithm matches the 
structure and functional requirements of sensor networks. This paper also 
introduces a new sensor network attack called an Interest Cache Poisoning 
Attack and discusses how the DCA can be applied to detect this attack.  

Keywords: Danger Theory, Artificial Immune Systems, Sensor Networks, 
Interest Cache Poisoning Attack. 

1   Introduction 

Danger threatens living organisms every day of their lives. Intuitively, one might 
therefore suppose that a successful strategy in our immune systems would be to detect 
danger instead of relying solely on the detection of antigens that identify specific 
pathogens. A hotly debated hypothesis in immunology known as the Danger Theory 
[13] proposes just this. This theory suggests that the human immune system can 
detect danger in addition to antigens in order to trigger appropriate immune responses. 
The Danger Theory states that appropriate immune responses produced by the 
immune system emerge from the balance between the concentration of danger and 
safe signals within the tissue of a body, not by discrimination of self from non-self.  

Danger also threatens modern computer networks every day. Aickelin et al. [1] 
presented the first in-depth discussion on the application of Danger Theory to 
intrusion detection and the possibility of combining research from wet and computer 
laboratory results. Their work aimed to build a computational model of Danger 
Theory in order to define, explore, and find danger signals. Greensmith et al [5] 
employed Dendritic Cells (DCs) within a Danger Theory based artificial immune 
system (AIS). DCs are a class of antigen presenting cells that ingest antigens or 
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protein fragments in the tissue. DCs are also receptive to danger signals in the 
environment that may be associated with antigens. Greensmith et al abstracted several 
properties of DCs that would be useful for anomaly detection and proposed the DC 
algorithm (DCA) to accommodate these properties. Recent work by the same authors 
[6] has also shown some initial results of using the DCA to detect port scanning. The 
outcome demonstrated the capability of the DCA as an anomaly detector.  

As Hart and Timmis stated in [8], after a decade of research in the area of AIS, the 
researchers in the AIS community pose a question on whether there is a distinctive 
niche application area that AIS can provide unique benefits that is not presented by 
other existing approaches. They also highlighted a list of unique immune features that 
are currently absent from the existing AIS and other intelligent paradigms. We argue 
that some of these features can be inherent in an application itself, and thus this type 
of application would be a more appropriate substrate in which to develop and 
integrate the benefits brought by AIS. We claim here that sensor networks are such an 
application area, in which the ideas from AIS can be readily applied. The objective of 
this paper is to illustrate how closely Danger theory based AIS, in particular the DCA 
matches the structure and functional requirements of sensor networks. 

The paper first reviews literature related to the Danger Theory based AIS. Section 
3 illustrates how properties and functional requirements of sensor networks conform 
to an artificial tissue. Section 4 introduces a new sensor network attack called the 
‘Interest cache poisoning attack’ and section 5 discusses how the DCA can be applied 
to detect this attack. Finally, section 6 concludes this work with future work. 

2   Danger Theory Based AIS 

2.1   Previous Work 

Since the first in-depth discussion of Danger Theory on the possibility of computing 
research [1], Bentley et al [3] introduced the concept of artificial tissue in order to 
adapt danger and safe signals (apoptosis and necrosis) thereby triggering artificial 
immune responses within an AIS. The authors stressed that the tissue is an integral 
part of immune function, with danger signals being released when tissue cells die 
under stressful conditions. Related work by Greensmith et al [5] employed DCs 
within AIS that coordinated T-cell immune responses. Kim et al [11] continued 
Greensmith et al’s work by discussing T-cell immunity and tolerance for computer 
worm detection. This work presented how three different processes within the 
function of T-cells, namely T-cell maturation, differentiation and proliferation could 
be embedded within the Danger Theory-based AIS. Twycross and Aickelin [15] 
provided a review of biological principles and properties of innate immunity, and 
showed how these could be incorporated into artificial models. In this work, authors 
addressed six properties of the innate immune system that would influence the 
capability of AIS. The same authors implemented the libtissue software that 
provides an innate immunity framework [16]. Finally, Le Boudec and 
Sarafijanovic [14] were also influenced by the idea of the Danger Theory, and chose 
to regard a packet loss in the network as a danger signal. Danger signals were used as 
co-stimulation signals confirming successful detection.  
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2.2   Dendritic Cell Algorithm  

This paper focuses specifically on the Dendritic Cell Algorithm [5,6,7] of Greensmith 
et al, which abstracted a number of properties of DCs that are possibly advantageous 
to design AIS for anomaly detection.  

In the human immune system, during the antigen ingestion process, immature DCs 
experience different types of signals that indicate the context (either safe or 
dangerous) of an environment where the digested antigens exist. The different types 
of signals lead DCs to differentiate into two types: mature and semi-mature. Chemical 
messages known as cytokines produced by mature and semi-mature DCs are different 
and influence the differentiation of naïve T-cells into several distinctive paths such as 
helper T-cells or killer T-cells. In order to employ these properties of DCs, 
Greensmith et al. categorised DC input signals into four groups – PAMPs (signals 
known to be pathogenic), Safe Signals (signals known to be normal), Danger Signals 
(signals that may indicate changes in behaviour) and Inflammatory Cytokines (signals 
that amplify the effects of other signals). When each artificial DC experiences the 
combination of these four different signal groups released by the artificial tissue, it 
interprets the context of ingested antigens by using a signal processing function, 
which weights each type of input signal differently. The output of a signal processing 
function determines the differentiation status of DCs (either semi-mature or mature).  

3   Artificial Immune Systems Applied to Sensor Networks  

The parallels between intrusion detection and immunity have long been the source of 
inspiration for AIS researchers, but conventional computer networks do not closely 
resemble the dynamic, distributed and fluid nature of organisms and their immune 
systems well. There is, however, a type of network that does share many of these 
features: sensor networks. In the following sections, we introduce this type of network 
and outline one popular routing protocol, known as Directed Diffusion [9]. 

3.1   Sensor Network Overview 

Sensor networks are an emerging technology and research area in the rapidly growing 
field of ubiquitous computing [4], aimed at providing distributed and massively 
parallel monitoring in heterogeneous physical environments. Sensors are typically 
low-cost, limited capacity, mass production units, consisting of no more than (i) a 
sensing unit, (ii) a processing unit, (iii) memory, (iv) a transceiver and (v) a power 
unit [2]. Their aim is two fold: (i) to faithfully execute their intended task, and (ii) to 
efficiently manage their limited resources, such as energy, so as to maximise their 
lifetime. The following features of sensor networks distinguish them from traditional 
computing environments [2, 4]: 
 

P1: Constrained resources – limited in physical capacity, bandwidth, cost, etc. 

P2: High-density – number and density of sensor nodes can be several orders of 
magnitude higher than the mobile nodes in an ad hoc mobile network. 
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P3: Fidelity though redundancy – due to their physical constraints, individual nodes 
are prone to failure through deliberate attack or normal malfunction. The redundancy 
of nodes is used to compensate for this. 

P4: Flexibility – aimed at operating under diverse conditions with minimal structured 
support, for example deployment in remote areas. 

P5: Dynamic network topology - the topology may change often. 

P6: Frequently data centric - IP addresses are not used, all nodes perform data-centric 
routing. 

P7: Self-organising – network connectivity is often ad-hoc and dynamically 
maintained. 

P8: Distributed computation – each node carries out simple data processing locally 
and sends out the partially processed data to other nodes. The chain of partial 
processing by individual nodes provides an aggregated solution. 

Together, these properties have provided the catalyst for a wide range of new 
applications, including environmental monitoring, disaster relief operations, military 
control/surveillance and health monitoring [2]. 

3.2   Directed Diffusion  

In addition to the distributed and dynamic nature of sensor network hardware, one 
popular routing method is equally suggestive of natural immune metaphors: the 
Directed Diffusion protocol. This is a routing algorithm used to gather data sensed by 
a large number of sensor nodes and disseminate to a node that requests such data [9]. 
Directed Diffusion works in two phases, an initial exploratory phase that is followed 
by a reinforcement phase. Together these phases make up the three different stages 
discussed in Fig. 1.  

The requesting node, referred to as the ‘sink node’ may request data from one or 
multiple other sensor nodes. As shown in Fig. 1(a), the sink periodically broadcasts its 
‘interest’ packets (containing a description of the sensing task e.g. the regular reading 
of a patient’s blood pressures) to its neighbours. Interest packets are then propagated 
throughout the whole network, resulting in creation of gradient fields representing the 
possible data flow paths from the source, back to the sink as shown in Fig. 1(b). Once 
the sink receives its requested data, it is then in a position to choose between its 
various neighbours by reinforcing the paths deemed most advantageous, for example 
based on the quality of service on the path that led to the neighbour, as shown in Fig. 
1(c). As a result, though during the exploratory data packets are forwarded toward the 
sink node along multiple paths, the gradient refinement process chooses the most 
preferred path.  

Reinforcements in Directed Diffusion come in two forms: positive and negative. 
Positive reinforcement encourages data flow along a given path, and the result is that 
data flows at a higher rate through the given path. In contrast, negative reinforcement 
discourages data flow along given paths, thereby reducing the rate at which data is 
sent through the path. The result is that the algorithms is dynamically able to tune its 
performance (with respect to the data flow path) based on arbitrary criteria.   
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Fig. 1. Directed Diffusion [9] 

3.3   Wireless Sensor Tissue  

Readers familiar with the field of AIS should find the properties of the sensor network 
using Directed Diffusion very familiar, because they mirror many of the properties of 
AIS algorithms. In this work we regard sensor networks as a suitable metaphor for the 
tissue of an organism - with diffusing packets acting as signals between cells. Using 
the work of Bentley [3] and Tycross [15] to aid this analogy: 

• Tissue cells have limited processing, storage, and communication capacity; while 
a cell has its own capability of processing and storage, it takes a limited amount of 
input proteins such as cytokines or binds to a restricted number of neighbour cells. 
As described in (P1) sensor networks share these features.  

• Biological tissue comprises a large number of cells. A tissue cell is the basic 
structural and functional unit, capable of functioning independently. A sensor 
network is similarly structured, see (P2).  

• Each cell is prone to failure: cells in biological tissue are continuously exposed to 
pathogenic attacks, just as individual nodes of a sensor network are at risk, see 
(P3). Later sections explain how an immune algorithm can integrate with a sensor 
network to help detect and overcome such attacks.  

• The cells in living tissue move and reorganise themselves, just as nodes of a 
sensor network may move or be deployed in different places and have variable 
topologies, see (P4) and (P5).  

• Communication between biological cells is through the diffusion of signalling 
proteins and the matching of antigenic patterns; communication between sensor 
network nodes (using the Directed Diffusion protocol) is through diffusion and the 
matching of packets, see (P6). 

• Tissue cells are self-organising, growing without predetermined global control; the 
spatial and temporal information is passed by signals while receptors help the 
entire structure of the tissue develop. Likewise a sensor network automatically and 
dynamically forms its connectivity, see (P7). 

• Biological tissue cells are distributed, they work in parallel, signalling to each 
other to perform the desired functions. A sensor network is a truly distributed 
system with nodes that are processing in parallel and communicating with each 
other, see (P8). 
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As discussed, the sensor network itself plays the role of artificial tissue and therefore 
the development of a separate artificial tissue as suggested in [3] and [15] is 
unnecessary. 

4   Poisoning Sensor Networks 

The analogy between sensor networks and tissue can also incorporate ideas of harm 
and damage. There are various types of vulnerabilities identified in sensor network 
environments that are often not found in conventional wired networks. This work 
focuses on vulnerabilities in sensor network routing protocols that rely on presence of 
limited capacity caches to keep a track of state of the network, for example the next 
hop for a packet. Directed Diffusion is one such protocol. Such protocols are typically 
optimised for nodes with limited resources and for specific applications, with little 
consideration for security.  

In their seminal work Karlof and Wagner [10] analysed diverse attacks against 
sensor network routing protocols and introduced some countermeasures. Notable 
attacks discussed include: Selective forwarding, Sinkhole attacks, Sybil attacks, 
Wormhole attacks, HELLO flood attacks and Acknowledge spoofing. In this paper, 
we introduce a new attack called the ‘Interest Cache Poisoning Attack’, which can 
easily disrupt multiple data paths in a network. The attacks discussed in [10] exploit 
the vulnerabilities of sensor networks that are also found from mobile ad-hoc 
networks. In contrast, the interest cache poisoning attack reflects the vulnerability of 
data-centric approaches which are often adopted for routing in sensor networks. 

Under the Directed Diffusion protocol, each node maintains an interest cache that 
records the history of received interest packets. Each entry contains an interest and 
gradient(s) towards neighbouring node(s) that have sent the interest packets, such that 
when a data packet arrives, a node looks up its interest cache in order to find the next 
hop for the data. If there is a matching interest, the node forwards the data packet to 
the neighbour node(s) indicated by the gradient(s). Otherwise the data packet is 
dropped. The basic idea of the interest cache poisoning attack is to inject fabricated 
interest packets to replace benign entries in the interest caches of other nodes. The 
attack is ideally aimed at nodes on established data paths that shall be referred to as 
the targets of the attack. 

For example, in our study of Tiny Diffusion - an implementation of the Directed 
Diffusion protocol for real sensor nodes running the TinyOS1, we found that: (i) An 
interest cache always has a fixed size and (ii) whenever a new interest packet arrives 
and the cache is full, the oldest entry is replaced. Therefore to realise a successful 
attack, the attacker can take advantage of the normal behaviour of the target by 
forcing it to drop the content of its cache. The attack works in two phases: First by 
flooding the target with bogus interests, thereby forcing it to drop those interests in its 
cache already. This leads to the second phase of the attack, when the requested data 
that was intended for distribution arrives, since the target no longer has gradients to 
those interested in it and will be forced to drop it. 
                                                           
1 TinyOS is an open-source operating system designed for wireless embedded sensor networks. 

(http://www.tinyos.net/) 
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This process will result in the disruption of data packet delivery to the sink node.  
Ideally, a given cache entry needs to be wiped out before the first data packet from 
the source node arrives at the target node. Otherwise the attack may succeed but may 
not be able to completely suppress the data flow. Though mechanistically different, 
the effect of this attack is analogous to that of ‘DNS cache-poisoning’ 
(http://en.wikipedia.org/wiki/DNS_cache_poisoning). However, we cannot use the 
same methods of protection against DNS cache-poisoning (i.e., randomised ports, 
restricted relaying, etc.) since these are aimed at the control plane and the Interest 
Cache Poisoning Attack is performed on the data plane.  

 
 

(a) Interest Cache Poisoning Attack Overview (b) Bogus interest packet propagation 

Fig. 2. Interest Cache Poisoning Attack 

Fig. 2 (a) shows the impact of the attack. The attacker sends out the bogus packets 
and fills up the cache of the nodes on the data path. The bogus interests will replace 
the original interest with ID 1. When the requested data with ID 1 arrives later, the 
target node will just drop it. This is because there is no matching entry in the cache. 
As shown in Fig. 2 (b), the attack will even be successful if the attacker is not next to 
the target node. The attack exploits the flooding behaviour of Directed Diffusion. 
Whenever a node receives a new interest packet it will rebroadcast it to all its 
neighbours. Hence, the bogus interest packets are spread and affect the caches of 
many nodes, eventually the cache of a target node. As a result, the impact of bogus 
packets can propagate over an entire network and disrupt multiple paths of data 
packet delivery.  

5   Using the DC Algorithm to Detect Interest Cache Poisoning 

Sensor networks using Directed Diffusion share a surprising number of similarities 
with biological tissue, including susceptibility to poison. Here we propose a security 
solution for sensor networks utilising Directed Diffusion with the aim of detecting 
cache poisoning attacks. The mechanism incorporates an immune algorithm inspired 
by the responsiveness of DCs in the human immune system to danger signals.  
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5.1   System Overview 

Figure 3 shows the overall architecture of the Danger Theory based AIS, which 
employs the DC algorithm (DCA). Our Danger Theory based AIS comprises of two 
stages: (i) Detecting misbehaving nodes and (ii) detecting antigens and responding to 
the detected antigens. The DCA performs the first stage of the job, detecting 
misbehaving nodes. The second stage of the job involves sending immune cells and 
signals between the nodes of the sensor network. This may be performed by a 
different immune inspired algorithm such as the one introduced in [11]. This paper 
focuses on the first stage. 
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Fig. 3. DC algorithm and Directed Diffusion execute on a sensor node 

A sensor node employing Directed Diffusion maintains two tables; the interest 
cache and the data cache and handles two types of packets; interest packets and data 
packets. While there are four possible sources of antigens and signals for input to the 
DCA, namely: (i) The interest cache, (ii) the data cache, (iii) interest packets and (iv) 
data packets. The signal generator and an antigen extractor are implemented as a sub-
module of Directed Diffusion, thereby integrating the AIS into the protocol. When a 
packet arrives at a node, Directed Diffusion updates the interest and/or a data cache 
according to its local cache update rules [9], and extracts the signals and antigens 
from the packet(s) and/or cache(s). These are then passed to the DCA.  

The immature DCs of the DCA sample the antigens and store them in their internal 
storage. They also combine various input signals using the signal weighting function 
shown in equation (1). The evaluation of the input signals results in output cytokines 
that differentiate between the immature DCs, to either become semi-mature or mature 
DCs. Antigens contained in semi-mature DCs are regarded as being collected under a 
normal condition, in contrast to the antigens stored by mature DCs that are collected 
under attack conditions. The DC analyser of the DCA reviews all the antigens stored 
in semi-mature and mature DCs and determines the state of each antigen as either 
“benign” or “malicious”. 
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5.2   Signals  

The DCA uses the four different types of input signals discussed in Section 5.1. In the 
following, we introduce various input signals that can be collected from a sensor 
network environment in order to detect an interest cache poisoning attack. Signals are 
categorised into the four groups: (i) Danger Signals (DS), (ii) Safe Signals (SS), (iii) 
PAMP signals (PS) and (iv) Inflammatory Cytokines (IC). A detailed explanation on 
how these four categories are defined is presented in [5].   

• DS1 - Generated from the interest cache insertion rate  
This is the first Danger Signal collected from abnormal interest cache insertion rates. 
DS1 signals are aimed at indicating that bogus interest packets have corrupted the 
interest cache of a node. In order to calculate this rate, a sliding time window is used 
to track the number of interest cache insertions per given time unit (such as 10 sec) 
and a total count is calculated by summing the window counts. After a minimum 
training period, the mean (μ) and standard deviation (σ) of the total count are 
calculated. DS1 is generated with the concentration given by (Xi - μ) / σ, where Xi is 
the count of in window i. 

• DS2 - Generated from the interest cache entry expiration 
There are two ways for an entry to be removed from the interest cache: (i) When its 
expiration time (a predefined time interval set by the sink node) has passed, or (ii) 
when the cache is already full and it is replaced by a new entry. Though a sink is able 
to overwrite its own entries in a cache by carelessly sending a large number of 
different interests during a short time interval, within in a well-behaved network, we 
do not expect this behaviour to be the norm. Therefore, the overwriting of entries long 
before their expiration time can indicate the presence of an attack. In order to identify 
such an event, the expiration field is checked whenever an entry is inserted. The 
concentration of a DS2 signal is the time difference between the expiration time and 
the entry overwriting time. Overwriting a very recent entry will lead to a much 
stronger signal than overwriting a nearly expired entry. 

• SS - Generated from the arrival of data packets  
This measurement shows that the data requested by the sink node has been forwarded 
to a given node. The nature of the Safe Signal is to indicate normal data flow. The 
absence of a Safe Signal does not necessarily indicate the existence of an attack, but a 
Safe Signal can be used to suppress a false detection alert. The entry of a data cache, 
which records the data packet forwarded, would serve this purpose. Whenever a data 
packet that matches an interest in the interest cache arrives, it will be forwarded and 
recorded in the data cache. Therefore, whenever a new entry is inserted into the data 
cache, an SS is generated and the concentration of the SS is 1.0. 

• PS - Generated from the data delivery failure at the sink node 
A PAMP signal is a strong indicator of a pathogenic presence. For an interest cache 
poisoning attack, the failure of data delivery to the sink node strongly indicates the 
possibility of an attack. Though delivery failures may result from many factors such 
as node failures on the established path or the absence of sensor nodes generating the 
requested data - the PAMP signal definitively establishes that what was expected did 
not happen and can be used to launch further investigation. This relative difference of 
confidence in abnormal behaviour makes the PAMP signal stronger than a Danger 
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Signal. For this purpose, the failure of requested data delivery would cause the sink 
node to generate a PS signal. Unlike other signals, that are just generated locally and 
not forwarded to other nodes, the PS is forwarded to other nodes. In order to transport 
the PS signal, a re-sent interest packet is used, with concentration of 1.0. 

• IC1 - Generated from the changes in gradient directions 
This process aims to detect the onset of an attack through analysing the change in the 
gradient directions. Relative change in the number of gradients per neighbour 
indicates the addition or removal of paths to a data source by that neighbour and 
consequently the number of paths that go through the given neighbour. The normal 
behaviour of Directed Diffusion is such that if the majority of the maintained 
gradients point to a given neighbour, a node would expect that neighbour to be closer 
to the sink node than the other entities in the cache. This is because the only process 
that should result in an increase in the frequency of gradients to a given neighbour is 
the consequence of reinforcements applied to paths through that neighbour. In our 
analogy, inflammatory cytokine (IC) amplifies the effects of the other three types of 
signals but it alone is not sufficient to cause the maturation of a DC. IC1 signals are 
generated by identifying bursts in the frequency of gradients to given neighbours. The 
concentration of IC1 signals represents the magnitude of the changes. Though IC1 
alone is not strong enough to indicate an attack, i.e. it could be the result of a normal 
topology change; it still indicates a disturbance that should be noted. It therefore 
represents an IC and not a DS. 

• IC2 - Generated from data without matching interest cache entry 
The reception of a data packet that cannot be matched to an interest in the cache can 
be used as an indicator of a problem. Though this does not necessarily indicate the 
presence of an attack, for example as the result of different interest expiration times, it 
still identifies anomalous situations. The concentration of IC2 is 1.0.  

5.3   Antigens  

From the view point of Danger Theory, antigens together with signals trigger immune 
responses. Antigens can originate from pathogens, the self or foreign cells. Immune 
cells attempt to bind antigens presented by semi-mature or mature DCs. When the 
receptors of immune cells bind to antigens passed by mature DCs, the immune cells 
become activated and later respond to new antigens binding to their receptors, i.e. 
killing antigens. In contrast, when the receptors of immune cells bind to antigens 
presented by semi-mature DCs, the immune cells become suppressed and later do not 
respond to new antigens binding to the receptors2. 

Likewise, the receptors of immune cells are used to find targets (antigens) of their 
immune responses. The AIS proposed in this work is required to have two types of 
responses. The first response is to identify an attacker node where a fabricated interest 
packet is created and sent out, and then to exclude this node from a sensor network. 
The second response is to identify bogus interest packets and then to stop forwarding 
them. For an interest cache poisoning attack, a node that is receiving bogus packets 

                                                           
2 Or the receptors of immune cells binding antigens presented by semi-mature DCs will bind to 

the receptors of other immune cells and suppress the responses released by these other 
immune cells. Regulatory T cells are such immune cells. 
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(and thus its cache is being poisoned), might poison its neighbour nodes by 
forwarding the bogus packets. If the AIS excludes this kind of node from a sensor 
network, it runs the risk of disabling the entire network. In this case, a more desirable 
response could be to continue the delivery of genuine packets while stopping the 
forwarding of bogus interest packets. This work focuses on making the second 
response and hence regards interest packets as antigens. In future work we aim to add 
further antigens to trigger the first type of response – identifying an attacker node. 

5.4   The Ubiquitous Dendritic Cell Algorithm 

Detailed description of the original DCA is presented in [7] and a simplified pseudo-
code of the ubiquitous DCA (UDCA) is shown in fig 4. UDCA is a variation of DCA 
that is designed to detect ‘Interest Cache Poisoning Attacks’ on sensor networks. 
UDCA has several properties that distinguish it from existing AIS. In the following 
section, we address the key elements of UDCA that could be particularly beneficial in 
detecting malicious activities in sensor networks, and their implementation in UDCA.   

• UDCA attempts to collect signals from multiple data sources: Although multiple 
signals provide richer information to make a detection decision, they require 
temporal calibration. Line 8-14 of fig. 4 shows that a DC continuously calculates a 
new output cytokine with new signals and antigens collected at each DC maturing 
cycle (DC_Mat_Cycle). New output cytokines are then added to previously 
estimated ones until the CSM cytokine reaches a migration threshold. This allows 
a DC to collect signals indicating a possibly identical status of context despite 
being generated asynchronously. Hence, UDCA fine-tunes delays between 
multiple signals using a CSM value update with migration threshold. 

• UDCA maps the context information delivered by signals with antigens in a 
temporal manner: antigens (interests) are gathered when signals are generated (see 
Signal_Generator and Antigen_Extractor at fig. 4). Depending on the type of 
signals, one or multiple antigens can be paired with a signal. For instance, in the 
UDCA (for SIG_new in Antigen_Extractor at fig.4), DS2, SS and PS will be 
paired with one interest packet triggering the signal generation. However, for DS1, 
IC1 and IC2, all the interests that exist at an interest cache when these signals are 
generated will be selected as antigens. In this case, the antigen extractor collects 
antigens that are temporally close to signals since the signals are generated from 
the changes at multiple entries of interest caches or an absence of matching benign 
interest. 

• UDCA combines multiple signals to judge an antigen context status: the diverse 
nature of signals contribute differently when judging an antigen context status. 
Empirical data obtained from immunologists’ experimental results3 suggest the 
weight values given in table 1. Equation (1) is a weighting function that 
determines the output cytokine by combining four types of input signals. This 
weighting function is used to handle a possible inconsistency existing between 
various signals. A given antigen can be judged by different signals in a 

                                                           
3 These results were obtained by the research team led by Dr. Julie McLeod, Dr. Rachel Harry 

and Charlotte Williams at University of West England. 
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contradictory manner – “semi-mature” and “mature”. In this case, the equation (1) 
determines a final decision by assigning a different weight to each signal. The line 
10 – 19 of fig.4 shows this stage of UDCA processing.  

PROCEDURE DC_Maturation(Ag_pop) 
1  Let DC_Mat_Cycle = 1; 
2  Creates a DC population, DC_pop; 
3  A migration threshold value is randomly generated from a given range 
4  Set a generated migration threshold value to each DC in DC_pop 
5  Do 
6 { 
7    For each DC from DC_pop 
8        Sample antigens, AGs, from Ag_pop, with replacement 
9        Store sampled antigens to DC’s internal antigen storage 
10       Copy the signals paired with AGs to DC’s internal signal storage 
11       Calculate the concent. for CSM, MAT, SEMI-MAT cytokine of DC using (1) 
12 
13       Add CSM, MAT, SEMI-MAT cytok. to 
14            total CSM, MAT, SEMI-MAT cytokine concent. respectively 
15       If a total CSM cytokine concent. > an assigned migration threshold 
16            If SEMI-MAT cytokine concent. > MAT cytokine concent. 
17               DC is moved to semi-mature DC population, SEMI_MAT_DC_pop 
18            else 
19               DC is moved to mature DC population, MAT_DC_pop 
20            endif 
21            call DC_Analyser(SEMI_MAT_DC_pop, MAT_DC_pop) 
22          endIf 
23   endFor 
24   Empty Ag_pop; 
25   DC_Mat_Cycle++; 
26 } while ( DC_Mat_Cycle < Max_DC_Cycle ) 
 
PROCEDURE DC_Analyser(SEMI_MAT_DC_pop, MAT_DC_pop) 
1 For each antigen Ag from SEMI_MAT_DC_pop and MAT_DC_pop 
2 Counts the number of times presented by SEMI_MAT_DC or MAT_DC 
3 If SEMI_MAT_COUNT > MAT_COUNT 
4 Ag is malicious 
5 else 
6 Ag is benign 
7 endIF 
8 endFor 
9 For each DC from SEMI_MAT_DC_pop and MAT_DC_pop 
10 Reset a migration threshold value of DC 
11 Set CSM, MAT, SEMI_MAT cytokine concent. of DC to be 0 
12 Set total CSM, MAT, SEMI_MAT cytokine concent. of DC to be 0 
13 Empty antigen and signal storages of DC 
14 Move the DC to DC_pop from  SEMI_MAT_DC_pop or MAT_DC_pop 
15 EndFor 
 
PROCEDURE Signal_Generator(Interest Cache, Data Cache, Packets) 
1 Generates a new signal, SIG_new  // as described in section 5.2 
2 If  SIG_new is generated 
3 Call Antigen_Extractor(Interest Cache, SIG_new) 
4 endIf 
 
PROCEDURE Antigen_Extractor(Interest Cache, SIG_new) 
1 Check through an Interest Cache 
2 Select interests matching to SIG_new 
3 Each selected interest becomes an antigen 

4 Add pairs of an antigen with SIG_new to Ag_pop 

Fig. 4. Pseudo code of the UDC algorithm to detect malicious activites 

Table 1. Suggested weights used for Equation (1), which is a signal weighting function [6]. WP, 
WD, WS, CP, CD,, CS are weights and concentrations of PS, DS, SS respectively. 

Weight csm semi mat 
WP  2 0 2 
WD  1 0 1 
WS  2 3 -3  
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• UDCA employs a population of DCs to determine the final antigen context status: 
as shown DC_Analyser procedure of UDCA in fig. 4, the context status of each 
antigen is determined by the collective decisions of multiple DCs’. Each DC 
samples antigens and its migration threshold values are set differently (see line 2-3 
of fig.4). These allow each DC to judge the context of one antigen differently and 
the final decision on a given antigen is therefore made from the aggregations from 
multiple DCs.    

• UDCA does not employ a pattern matching based detection: UDCA concentrates 
on identifying bogus interest packets and filtering them out. This is another 
different trait from other existing AISs, which usually employ pattern matching to 
detect an on-going attack. UDCA detects an attack by examining how much a 
given node is misbehaving via generated signals. It then collects data (=antigens) 
for the next AIS algorithm to perform a pattern matching detection, which is 
required to produce responses. In responding, an AIS needs to react to a malicious 
antigen before it damages a monitored system and causes generations of signals. It 
is necessary for an artificial immune responder to have a pattern matching based 
detection. Therefore, UDCA plays the role of the innate immune system that 
presents the context information with matching antigens to the adaptive immune 
system [3], [15].  

6   Conclusion 

This work introduces the concept of sensor networks as a new application area for 
AIS research and argues that some AIS features are inherent in sensor networks. We 
illustrate how closely a Danger Theory based AIS, in particular the dendritic cell 
algorithm (DCA), matches the structure and functional requirements of sensor 
networks. This work also introduces a new sensor network attack called an interest 
cache poisoning attack and discusses how the DCA can be applied to detect an 
interest cache poisoning attack.  

Currently we have implemented a number of different versions of an interest cache 
poisoning attacks by varying the bogus packet sending rates, the number of sink node 
interest subscriptions and the location of an attacker. In addition, various types of 
signals introduced in this paper have been being generated. The attacks and the signal 
generator have been being implemented under a network simulator, J-Sim (www.j-
sim.org) and TOSSIM (www.cs.berkeley.edu/~pal/research/tossim.html). As 
discussed in this paper, UDCA appears to be an attractive solution to filter out bogus 
packets but the more detailed features of UDCA need to be further investigated. In 
future work, we aim to thoroughly study the appropriateness of a weight function 
used, the sensitivity analysis of various parameters, and the efficiency required to be 
used in a limited environment like a sensor node. 
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Articulation and Clarification of the Dendritic
Cell Algorithm
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Abstract. The Dendritic Cell algorithm (DCA) is inspired by recent
work in innate immunity. In this paper a formal description of the DCA
is given. The DCA is described in detail, and its use as an anomaly de-
tector is illustrated within the context of computer security. A port scan
detection task is performed to substantiate the influence of signal selec-
tion on the behaviour of the algorithm. Experimental results provide a
comparison of differing input signal mappings.

Keywords: dendritic cells, artificial immune systems, anomaly detection.

1 Introduction

Artificial immune systems (AIS) are a collection of algorithms developed from
models or abstractions of the function of the cells of the human immune system.
The first, and arguably the most obvious, application for AIS is in the protection
of computers and networks, through virus and intrusion detection[2]. In this
paper we present an AIS approach to intrusion detection based on the Danger
Theory, through the development of an algorithm based on the behaviour of
Dendritic Cells (DCs). DCs have the power to suppress or activate the immune
system through the correlation of signals from an environment, combined with
location markers in the form of antigen. A DCs function is to instruct the immune
system to act when the body is under attack, policing the tissue for potential
sources of damage. DCs are natural anomaly detectors, the sentinel cells of the
immune system, and therefore the development of a DC based algorithm was
only a matter of time. The Dendritic Cell Algorithm (DCA) was introduced in
2005 and has demonstrated potential as a classifier for a static machine learning
data set[4] and anomaly detector for real-time port scan detection[5]. The DCA
differs from other AIS algorithm for the following reasons:

– multiple signals are combined and are a representation of environment or
context information

– signals are combined with antigen in a temporal and distributed manner
– pattern matching is not used to perform detection, unlike negative

selection[6]
– cells of the innate immune system are used as inspiration, not the adaptive

immune cells and unlike clonal selection, no dynamic learning is attempted

H. Bersini and J. Carneiro (Eds.): ICARIS 2006, LNCS 4163, pp. 404–417, 2006.
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The aim of this paper is to demonstrate the anomaly detection capabilities of
the DCA and to clarify which features of the algorithm facilitate detection.

2 Dendritic Cells in vivo

The DCA is based on the function of dendritic cells whose primary role is as an
antigen presenting cell. DCs behave very differently to the cells of the adaptive
immune system. Before describing the function of the algorithm we give a general
overview of DC biology, introducing different cells, organs and their behaviour.
More information on natural DCs can be found in [9].

In vivo, DCs can perform a number of different functions, determined by their
state of maturation. Modulation between these states is facilitated by the de-
tection of signals within the tissue - namely danger signals, PAMPs (pathogenic
associated molecular patterns), apoptotic signals (safe signals) and inflamma-
tory cytokines which are described below. The maturation state of a DC is de-
termined by the relative concentrations of these four types of signal. The state
of maturity of a DC influences the response by T-cells, to either an immuno-
genic or tolerogenic state, for a specific antigen. Immature DCs reside in the
tissue where they collect antigenic material and are exposed to signals. Based on
the combinations of signals received, maturation of the DCs occurs generating
two terminal differentiation states, mature or semi-mature. Mature DCs have an
activating effect while semi-mature DCs have a suppressive effect. The different
output signals (termed output cytokines) generated by the two terminal states of
DCs differ sufficiently to provide two different contexts for antigen presentation,
shown abstractly in Figure 1.

Fig. 1. An abstract view of DC maturation and signals required for differentiation.
CKs denote cytokines
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The characteristics of the relevant signals are summarised below:

– PAMPS are pre-defined bacterial signatures, causing the maturation of im-
mature DCs to mature DCs through expression of ‘mature cytokines’.

– Danger signals are released as a result of damage to tissue cells, also increas-
ing mature DC cytokines, and have a lower potency than PAMPs.

– Safe signals are released as a result of regulated cell death and cause an
increase in semi-mature DC cytokines, and reduce the output of mature DC
cytokines

– Inflammatory cytokines are derived from general tissue distress and amplify
the effects of the other three signals but are not sufficient to cause any effect
on immature DCs when used in isolation.

3 Dendritic Cells in silico

The Dendritic Cell Algorithm (DCA) was developed as part of the Danger
Project[1], which aims to find the missing link between AIS and Intrusion Detec-
tion through the application of the danger theory[8]. The danger theory proposes
that the immune system responds when damage to the host is detected, rather
than discriminating between self and non-self proteins. The project encompasses
artificial tissue[3] and T-cells[7], and the libtissue framework[11]. The DCs are
the detection component developed within this project.

3.1 Libtissue

Libtissue is a software system which allows the implementation and testing of
AIS algorithms on real-world problems based on principles of innate immunol-
ogy [10], [11]. It allows researchers to implement AIS algorithms as a collection
of cells, antigen and signals interacting within a tissue compartment. The im-
plementation has a client/server architecture, separating data collection from
data processing. Input data to the tissue compartment is generated by sensors
monitoring environmental, behavioural or context data through the libtissue
client, transforming this data into antigen and signals. AIS algorithms can be
implemented within the libtissue server, as libtissue provides a convenient
programming environment. Both client and server APIs allow new antigen and
signal sources to be added to libtissue servers, and the testing of the same
algorithm with a number of different data sources. Input data from the tissue
client is represented in a tissue compartment contained on the tissue server.
A tissue compartment is a space in which cells, signals and antigen interact.
Each tissue compartment has a fixed-size antigen store where antigen provided
by libtissue clients is placed. The tissue compartment also stores levels of
signals, set either by tissue clients or cells.

3.2 Abstract View of the DCA

The DCA is implemented as a libtissue tissue server. Input signals are com-
bined with a second source of data, such as a data item ID, or program ID
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number. This is achieved through using a population of artificial DCs to per-
form aggregate sampling and data processing. Using multiple DCs means that
multiple data items in the form of antigen are sampled multiple times. If a sin-
gle DC presents incorrect information, it becomes inconsequential provided that
the majority of DCs derive the correct context. The sampling of data is com-
bined with context information received during the antigen collection process.
Different combinations of input signals result in two different antigen contexts.
Semi-mature antigen context implies antigen data was collected under normal
conditions, whereas a mature antigen context signifies a potentially anomalous
data item. The nature of the response is determined by measuring the number of
DCs that are fully mature, represented by a value, MCAV - the mature context
antigen value. If the DCA functions as intended, the closer this value is to 1,
the greater the probability that the antigen is anomalous. The MCAV value is
used to assess the degree of anomaly of a given antigen. By applying thresh-
olds at various levels, analysis can be performed to assess the anomaly detection
capabilities of the algorithm.

The DCA has three stages: initialisation, update and aggregation. Initialisation
involves setting various parameters and is followed by the update stage. The
update stage can be decomposed into tissue update and cell cycle. Both the
tissue update and cell cycle form the libtissue tissue server. Signal data is fed
from the data-source to the tissue server through the tissue client.

The tissue update is a continuous process, whereby the values of the tissue
data structures are refreshed. This occurs on an event-driven basis, with values
for signals and antigen updated each time new data appears in the system.
Antigen data enters tissue update in the same, event driven manner. The updated
signals provide the input signals for the population of DCs.

The cell cycle is a discrete process occurring at a user defined rate. In this pa-
per, 1 cell cycle is performed per second. Signal and antigen from the tissue data
structures are accessed by the DCs during the cell cycle. This includes an update
of every DC in the system with new signal values and antigen. The cell cycle and
update of tissue continues until a stopping criteria is reached, usually until all
antigen data is processed. Finally, the aggregation stage is initiated, where all
collected antigen are subsequently analysed and the MCAV per antigen derived.

3.3 Parameters and Structures

The algorithm is described using the following terms.

– Indices:
i = 0, ..., I input signal index;
j = 0, ..., J input signal category index;
k = 0, ..., K tissue antigen index;
l = 0, ..., L DC cycle index;
m = 0, ..., M DC index;
n = 0, ..., N DC antigen index;
p = 0, ..., P DC output signal index.
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– Parameters:
I = maximum number of input signals per category;
J = maximum number of categories of input signal;
K = maximum number of antigen in tissue antigen vector;
L = maximum number of DC cycles;
M = maximum number of DCs in population;
N = maximum number of antigen contained per DC ;
P = maximum number of output signals per DC;
Q = number of antigens sampled per DC for one cycle.

– Data Structures:
DCm={sDC(m), aDC(m), ō(m), t(m)}- a DC within the population;
T = {S, A} - the tissue;
S = tissue signal matrix;
sij = a signal type i, category j in the signal matrix S;
A = tissue antigen vector;
ak = antigen index k in the tissue antigen vector;
sDC =DC signal matrix;
aDC = DC antigen vector;
o = temporary output signal vector for DCm;
o(m) = output signal p in the output signal vector of DCm;
ōp = cumulative output signal vector for DCm;
tm = migration threshold for DCm;
wijp = transforming weight from sij op.

Fig. 2. Tissue and Cell Update components, where Si,j is reduced to Sj

The data structures are represented graphically in Figure 2. Each DCm trans-
forms each value of sDC(m) to op(m) using the following equation with suggested
values for weightings given in Table 1. Both the equation and weights are derived
from observing experiments performed on natural DCs (personal communication
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from Dr J. McLeod and colleagues, UWE, UK), and information presented in
Section 2 (more details found in [4]).

op(m) = i j �=3
WijpsDC

ij

i j �=3
|Wijp| ∗ i

Wi3p(sDC
i3 +1)

i

|Wi3p| ∀p

Table 1. Examples of weights used for signal processing

wijp j = 1 j = 2 j = 3 j= 4
p = 1 2 1 2 1
p = 2 0 0 3 1
p = 3 2 1 -3 1

The tissue has containers for signal and antigen values, namely S and A. In
the current implementation of the DCA, there are 4 categories of signal (j = 3)
and 1 signal per category (i = 0). The categories are derived from the 4 signal
model of DC behaviour described in Section 2 where: s0,0 = PAMP signals, s0,1
= danger signals, s0,2 = safe signals and s0,3 = the inflammatory signal. An
antigen store is constructed for use within the tissue cycle where all DCs in the
population collect antigen, which is also introduced to the tissue in an event
driven manner.

The cell cycle maintains all DC data structures. This includes the mainte-
nance of a population of DCs, DCm, which form a sampling set of size M . Each
DC has an input signal matrix, antigen vector, output signals, and migration
threshold. The internal values of DCm are updated, based on current data in
the tissue signal matrix and antigen vector. The DC input signals, sDC

ij , use the
identical mapping for signal categories as tissue sij and are updated every cell
cycle iteration. Each sDC

ij for DCm is updated via an overwrite every cell cycle.
These values are used to calculate output signal values, op, for DCm, which are
added cumulatively over a number of cell cycles to form ōp(m), where p = 0 is
costimulatory value, p = 1 is the mature DC output signal, and p = 2 is the
semi-mature DC output signal.

3.4 The DCA

The following pseudocode shows the initialisation stage, cycle stage, tissue up-
date and cell cycle.

initialise parameters {I, J, K, L, M, N, O, P, Q}
while (l < L)

update A and S
for m = 0 to M

for 0 to Q
DCm samples Q antigen from A

for all i = 0 to I and all j = 0 to J
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sDC
ij = sij

for n = 0 to N
DCm processes aDC

nm

for p to P
compute op

ōp(m) = ōp(m) + op

if o0(m) > tm

DCm removed from population
DCm migrate to Lymph node

l++

analyse antigen and calculate MCAV

3.5 Lymph Node and Antigen Aggregation

Once DCm has been removed from the population, the contents of aDC
n and

values ōpm are logged to a file for the aggregation stage. Once completed, sDC
ij ,

aDC
n and ōpm are all reset, and DCm is returned to the sampling population. The

re-cycling of DCs continues until the stopping condition is met (l = L). Once
all data has been processed by the DCs, the output log of antigen-plus-context
is analysed. The same antigen is presented multiple time with different context
values. This information is recorded in a log file. The total fraction of mature
DCs presenting said antigen (where ō1 > ō2) is divided by the total amount of
times the antigen was presented namely ō1/(ō1 + ō2) . This is used to calculate
the mean mature context antigen value or MCAV.

3.6 Signals and Antigen

An integral part of DC function is the ability to combine multiple signals to
influence the behaviour of the cells. The different input signals have different
effects on cell behaviour as described in Section 2. The semantics of the different
category of signal are derived from the study of the influence of the different
signals on DCs in vitro. Definitions of the characteristics of each signal cate-
gory are given below, with an example of an actual signal per category. This
categorisation forms the signal selection schema.

– PAMP - si0 e.g. the number of error messages generated per second by a
failed network connection
1. a signature of abnormal behaviour e.g. an error message
2. a high degree of confidence of abnormality associated with an increase

in this signal strength
– Danger signal - si1 e.g. the number of transmitted network packets per second

1. measure of an attribute which significantly increases in response to ab-
normal behaviour

2. a moderate degree of confidence of abnormality with increased level of this
signal, though at a low signal strength can represent normal behaviour.
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– Safe signal - si2 E.g. the inverse rate of change of number of network packets
per second. A high rate of change equals a low safe signal level and vice versa.
1. a confident indicator of normal behaviour in a predictable manner or a

measure of steady- behaviour
2. measure of an attribute which increases signal concentration due to the

lack of change in strength
– Inflammatory signal -si3 e.g. high system activity when no user present at a

machine
1. a signal which cannot cause maturation of a DC without the other signals

present
2. a general signal of system distress

Signals, though interesting, are inconsequential without antigen. To a DC,
antigen is an element which is carried and presented to a T-cell, without regard
for the structure of the antigen. Antigen is the data to be classified, and works
well in the form of an identifier, be it an anomalous process ID[5] or the ID
of a data item [4]. At this stage, minimal antigen processing is performed and
the antigen presented is an identical copy of the antigen collected. Detection is
performed through the correlation of antigen with signals.

4 Return of the Nmap - the Port Scan Experiment
Revisited

The purpose of these experiments is as follows:

1. To validate the theoretical model which underpins the DCA
2. To investigate sensitivity to changes in the treatment of signals
3. To apply the DCA to anomaly detection for computer security

4.1 Port Scanning and Data

In this paper, port scanning is used as a model intrusion. While a port scan is not
an intrusion per se, it is a ‘hacker tool’ used frequently during the information
gathering stage of an intrusion. This can reveal the topology of a network, open
ports and machine operating systems. The behaviour of outgoing port scans pro-
vide a small scale model of an automated attack. While examination of outgoing
traffic will not reveal an intruder at the point of entry, it can be used to detect
if a machine is subverted to send anomalous or virally infected packets. This is
particularly relevant for the detection of scanning worms and botnets. The DCA
is applied to the detection of an outgoing port scan to a single port across a
range of IP addresses, based on the ICMP ‘ping’ protocol.

Data is compiled into 30 sessions, namely 10 attack, 10 normal and 10 control
sessions. Each session includes a remote log-in to the monitored machine via
SSH, and contains an event. The attack session includes a port scan performed by
popular port scanning tool nmap, using the -sP option for an ICMP ‘ping’ scan,
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across a range of 1020 IP addresses. The normal session includes a transfer of a
file of 2.5MB from the monitored machine to a remote server. The control session
has no event and allows us to observe any signal deviations caused through
monitoring the SSH session.

4.2 Signals and Antigen

Data from the monitored system are collected for the duration of a session. These
values are transformed into signal values and written to a log file. Each signal
value is a normalised real-number, based on a pre-defined maximum value. For
this experiment the signals used are PAMPs, danger and safe signals. Inflamma-
tory cytokines (Si4) do not feature as they are not relevant for this particular
problem. PAMPs are represented as the number of “destination unreachable”
errors-per-second recorded on the ethernet card. When the port scan process
scans multiple IP addresses indiscriminately, the number of these errors in-
creases, and therefore is a positive sign of suspicious activity. Danger signals
are represented as the number of outbound network packets per second. An in-
crease in network traffic could imply anomalous behaviour. This alone would not
be useful as legitimate behaviour can cause an increase in network packets. The
safe signals in this experiment are the inverse rate of change of network packets
per second. This is based on the assumption that if the rate of sending network
packets is highly variable, the machine is behaving suspiciously. None of these
signals are enough on their own to indicate an anomaly. In these experiments
the signals are used to detect the port scan, and to not detect the normal file
transfer.

During the session each process spawned from the monitored ssh session is
logged through capturing all system calls made by the monitored processes using
strace. Antigen is created with each system call made by a process, with antigen
represented as the process ID value of a system call. Each antigen is processed
subsequently by the DCA, and those presented with context are assigned a
MCAV for assessment.

4.3 The Experiments

Experiments are performed to examine the influence of using different signal
mappings. In these experiments a signal designed to be a PAMP is used as
a danger signal and vice versa. The same is performed with PAMP and safe
signals. We hypothesise based on previous experience using the DCA that it will
be robust to incorrect signal mapping between danger and PAMP signals, but
will lose detection accuracy if a safe signal is switched with a PAMP.

We also examine the effect of multiple antigen sampling on the performance of
the algorithm. The DCA is designed so each DC can present multiple antigen on
migration from the sampling population. Each DC presents a small subset of the
total antigen within the tissue for its lifetime in the cell cycle. If multiple copies
of the same antigen are used, robust coverage of input antigen can be achieved.
To investigate the influence of multiple antigen presentation, an experiment is
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performed through limiting the antigen storage capacity (N) of each DC to 1.
If less antigen is presented, the accuracy of the DCA could be impeded. An
additional version of the DCA, known as ‘DCLite’, is implemented as the most
basic form of the algorithm. DCLite uses one context signal, with N = 1, as in
experiment M4. Based on our working knowledge of the data and of the DCA, we
predict that it not possible to perform anomaly detection with the PAMP signal
(S0,1) alone. The performance of the algorithm under the various conditions is
assessed through analysing the MCAV values. Five experiments are performed:

M1 using the suggested ‘hand selected’ input signals
M2 danger and PAMP signal swapped
M3 PAMP and safe signal swapped
M4 using a DC antigen vector size of 1, with signal mapping M1
M5 DC antigen vector of size 1 and using the PAMP signal only (DCLite)

Experiments M1 - M5 are performed for all individual attack and normal
datasets as separate runs. Each data session is analysed by the DCA 3 times
for each experiment (a total of 240 runs). Parameters for the experiments are
as follows: I = 1; J = 4; K = 500; L = 120; M = 100; N = 50; P = 3; Q = 1.
All experiments are performed on a AMD Athlon 1GHz Debian Linux machine
(kernel 2.4.10) with all code implemented in C (gcc 4.0.2).

4.4 Results

The mean MCAV for each process type and each session type, both attack and
normal, are recorded and presented in Table 2. Any process generating a non-zero
MCAV is considered for analysis and termed a process of interest. The MCAV
values for the 4 processes of interest for the attack sessions are represented in

Table 2. MCAV values for each experiment across each dataset

Expt. Attack
nmap pts bash sshd

mean stdev mean stdev mean stdev mean stdev
M1 0.82 0.04 0.67 0.11 0.18 0.22 0.02 0.24
M2 0.86 0.27 0.78 0.12 0.28 0.27 0.19 0.35
M3 0.90 0.04 0.62 0.13 0.99 0.33 0.96 0.02
M4 0.82 0.21 0.55 0.14 0.16 0.26 0.13 0.27
M5 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Expt. Normal

scp pts bash sshd
mean stdev mean stdev mean stdev mean stdev

M1 0.14 0.29 0.12 0.25 0.01 0.02 0.01 0.01
M2 0.24 0.33 0.18 0.29 0.04 0.03 0.05 0.09
M3 1 0 1 0 1 0 1 0
M4 0.19 0.25 0.1 0.17 0.01 0.03 0.05 0.08
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Figure 3. This shows experiment M1-M4 for the two normal processes of the bash
shell (bash) and ssh demon (sshd) and the two anomalous processes namely the
nmap and the pseudo-terminal slave (pts) which displays the nmap output. The
MCAV values for the anomalous processes is significantly higher than that of
the normal processes for experiments M1, M2 and M4. Experiment M3 does not
show the same trend, though interestingly the nmap MCAV is not significantly
different to the values for experiments M1, M2 and M4. All MCAV values for ex-
periment M5 equal 1 because antigen is never presented in a semi-mature context
due to lack of other signals. The normal session is represented in a similar man-
ner, also shown in Figure 3. Significantly lower values for MCAV for all processes
are reported, with the exception of experiment M3. The processes of interest in-
clude the bash shell, ssh demon, the file transfer (scp) and a forwarding client
(x-forward). In the control experiment the mean MCAV values for all presented
antigen were zero - no processes of interest could be highlighted. From this we can
assume that the process of remote log-in is not enough to change the behaviour of
the machine. All antigens were presented in a safe context implying steady-state
system behaviour reflected through the MCAV output of the algorithm.

4.5 Analysis

In experiment M1 distinct differences are shown in the behaviour of the algorithm
for the attack and normal datasets. The MCAV for the the anomalous process is
significantly larger than the MCAV of the normal processes. This is encouraging
as it shows that the DCA can differentiate between two different types of pro-
cess based on environmentally derived signals. In experiment M2 the PAMP and
danger signals were switched. In comparison with the results presented for ex-
periment M1, the MCAV for the anomalous process is not significantly different
(paired t-test p < 0.01). However, in experiment M2, the standard deviations
of the mean MCAVs are generally larger and is especially notable for the nmap
process. Potentially, the two signals could be switched (through accidental means
or incorrect signal selection) without altering the performance of the algorithm
significantly. Experiment M3 involved reversing the mapping of safe and PAMP
signals. The safe signal is generated continuously when the system is inactive and
when mapped as a PAMP constantly generated full maturation in the artificial
DCs, shown by the high MCAV value for all processes indiscriminately. Interest-
ingly, in M3 the MCAV value for the anomalous processes in the attack datasets
is lower than the normal process’ value. For the normal dataset, all processes are
classified as anomalous, all resulting in a MCAV of 1, a 100% false positive rate.
These three experiments show that adding some expert knowledge is beneficial
to the performance of the algorithm. It also supports the use of the proposed
signal selection schema for use within the algorithm and has highlighted one key
point - danger and PAMP signals should increase in response to a change in the
system, whereas a PAMP must be the opposite, namely an indicator of little
change within the system.

By comparing the results from experiment M1 and M4, the influence of mul-
tiple antigen sampled per DC can be observed. In M4, the anomalous processes’
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Fig. 3. The rate of detection for attack (upper graph) and normal (lower graph) for
the 4 processes of interest (MCAV value) for experiments M1-M4 is shown

MCAV are significantly greater than that of the normal processes. In compar-
ison with M1, the detection of the anomalous processes was not significantly
different for nmap, and was slightly lower for the pts process. Conversely, the
MCAV for all normal processes from both the attack and normal datasets was
greater than in experiment M1. Examination of the number of antigen presented
revealed that fewer antigens per process were presented than in experiment M1.
This implies that the MCAV values were generated from a smaller set size and
could be responsible for the differences in detection. Multiple antigen sampling
can improve the detection of anomalous processes while reducing the amount
of normal processes presented as anomalous. More experiments must be per-
formed using a range of antigen vector sizes to confirm this result. Experiment
M5 yielded interesting results, showing it is not possible to discriminate between
normal and anomalous (nmap) processes based on the PAMP signal alone. In
M5, 3 out of the 10 datasets yielded no results, with insufficient PAMP signal
generated to cause antigen presentation. For the remaining 7 datasets, all pro-
cesses of interest produced a MCAV of 1. No discrimination was made between
the normal and anomalous processes. In the absence of being able to discrimi-
nate based on the MCAVs, it may still be possible to determine the anomalous
process for M5 based on the ratio of presented antigen to antigen input. The
ratio for nmap antigen over the 7 successful runs is 0.054, and 0.02 for the ssh
demon. A paired T-test shows that the sshd antigen ratio was significantly larger
than the nmap ratio, further confirming the poor performance of DC Lite. One
possible explanation for the poor performance of the DCA is that the safe signal
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is vital to provide some ‘tolerance’ for the processes which run constantly such
as the ssh demon. Further investigations will be performed with the use of safe
signals and the role of active suppression in the performance of the DCA.

Fig. 4. Analysis of attack data for experiment M1-M4 in terms of accuracy at different
thresholds

The accuracy for experiments M1-M4 is calculated by applying increasing
threshold values to the MCAV values for the attack datasets, within a range of
0-1 at 0.1 intervals. If the MCAV value of a process exceeds this threshold then
the process is classed as anomalous. The number of true positives and true nega-
tives are calculated. The accuracy is calculated for each experiment (accuracy =
true positives+true negatives / total number of processes) and the results of this
analysis are presented in Figure 4. This figure shows that for experiment M1, if
the threshold is between 0.2 and 0.7 the anomaly detection accuracy is 100%. For
experiment M2 100% accuracy is also achieved, but is in the range of 0.3-0.8. M4
is of interest, as the range at which 100% accuracy is achieved is reduced in com-
parison to M1 and M2. As expected M3 performs significantly poorer than all
others, also shown in Figure 4. For the normal dataset a similar analysis showed
lower rates of false positives for increasing thresholds, with the exception of M3.

5 Conclusions

In this paper the DCA has been described in detail and interesting facets of the
algorithm have been presented. The importance of careful signal selection has
been highlighted through experiments. The DCA is somewhat robust to misrep-
resentation of the activating danger and PAMP signals, but care must be taken to
select a suitable safe signal as an indicator of normality. In addition, the influence
of multiple antigen presentation by each DC was investigated. Reduced antigen
throughput, a decrease in detection of true positives and an increase in the rate
of false positives are observed. The process by which these signals are combined
has been described, and how changes in the semantic mappings of the signals
influence the algorithm. Data processing was performed by a population of DCs,
and multiplicity in sampling produced improved results. The baseline experi-
ment highlighted that it is not possible to perform detection using a predefined
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‘signature-based’ signal, regardless of how the results are analysed. Not only
have we demonstrated the use of the DCA as an anomaly detector, but have
also uncovered elements of behaviour previously unseen from the application of
this algorithm.

Many aspects of this algorithm remain unexplored such as the sensitivity
of the parameters and scalability in terms of number of cells and number of
input signals. Our future work with this algorithm includes a sensitivity analysis
and the generation of a solid baseline for comparison, in addition to performing
similar signal experiments with a larger, more realistic, real-time problem.
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Abstract. Adaptive information filtering is a challenging research prob-
lem. It requires the adaptation of a representation of a user’s multiple
interests to various changes in them. We investigate the application of an
immune-inspired approach to this problem. Nootropia, is a user profiling
model that has many properties in common with computational mod-
els of the immune system that have been based on Franscisco Varela’s
work. In this paper we concentrate on Nootropia’s evaluation. We define
an evaluation methodology that uses virtual user’s to simulate various
interest changes. The results show that Nootropia exhibits the desirable
adaptive behaviour.

1 Introduction

Information Filtering (IF) systems seek to provide a user with relevant infor-
mation based on a tailored representation of the user’s interests, a user profile.
The user interests are considered to be long-term. Consequently, a user may
be interested in more than one topic in parallel. Also, changes in user interests
are inevitable and can vary from modest to radical. In addition to short-term
variations in the level of interest in certain topics, new topics of interest may
gradually emerge and interest in existing topics may wane. Adaptive IF deals
with the problem of adapting the user profile to such interest changes.

Profile adaptation to changes in a user’s multiple interests is a fascinating and
challenging problem that has already attracted biologically-inspired approaches.
Evolutionary IF systems maintain a population of profiles (chromosomes) to
represent a user’s interests and apply Genetic Algorithms–inspired by natu-
ral evolution–to evolve the population and thus adapt the profiles to changes
in them. These approaches treat profile adaptation as a continuous optimisa-
tion problem and tackle it by performing combined global and local search in a
stochastic, but directed fashion.

Profile adaptation however is not a traditional optimisation problem. As Fil-
lipo Menczer puts it [1], it is a ”multimodal” and time-dependent one, where
convergence to a single optimum should be avoided. A user’s multiple and chang-
ing interests translate into an information space where there are multiple optima
that change over time. It has been argued and supported experimentally [2,3],
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that in time dependent optimisation problems, like profile adaptation, where the
optimum, or optima, change over time, GAs suffer due to their elitist character.
GAs converge and there is a progressive loss in diversity as the optimum prolifer-
ates and spreads over the population. This can cause evolutionary IF systems to
specialise to one area (topic) of interest and reach a state which inhibits further
adaptation.

The immune system’s ability to discriminate between the host organism’s own
molecules (self) and foreign, possibly harmful, molecules (non-self), serves well
as a metaphor to the problem of IF. Typically, Immune-inspired IF systems
employ a dynamic repertoire of profile representations (antibodies) that learn to
discriminate between relevant information (self) and non-relevant information
(non-self). The composition of this repertoire changes in a way that, in contrast
to GAs, not only maintains, but also boosts diversity. As we further discuss in
the next section, this characteristic may prove advantageous when dealing with
adaptive IF. Despite this potential however, the application of immune-inspired
approaches to the problem of adapting the user profile to changes in the user’s
multiple interests has not been fully explored yet. Existing immune-inspired IF
systems concentrate on traditional routing applications where profiles are trained
in a batch mode and then used for filtering. Profile adaptation is either ignored,
or treated simply by periodically repeating the training process.

To explore the application of immune-inspired ideas to the problem of profile
adaptation we evaluate in this paper Nootropia1, a user profiling model that has
been introduced in [4,5]. The immune network is used as a metaphor to build a
network of terms that represents a user’s multiple interests (section 3.1) and that
adapts to changes in them through a process of self-organisation (section 3.2).
The evaluation methodology (section 4) uses virtual users to simulate a variety
of interest changes. The results show that through self-organisation a user profile
that represents more than one topic of interest can adapt to both modest and
radical interest changes. They exhibit the profile’s ability both to ”learn” and
to ”forget” and signify the importance of the network structure during this
process. The evaluation methodology itself is of interest because it reflects more
accurately than existing standards the multimodal and time-dependent nature
of adaptive IF. The current work is part of ongoing research on biologically
inspired IF that seeks to compare AIS and GAs on this challenging problem.

2 Evolutionary and Immune-Inspired IF

The insight behind GAs is that the fundamental components of biological evo-
lution can be used to evolve solutions to problems within computers. They are
stochastic search techniques that have been traditionally applied to optimisation
problems. Typically in evolutionary IF a population of profiles, which collec-
tively represent the user interests, is maintained [6,7,8,9]. The population evolves
according to user feedback. Individual profiles that better represent the user
1 Greek word for: “an individual’s or a group’s particular way of thinking, someone’s

characteristics of intellect and perception”.
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interests become fitter, reproduce and proliferate, while those that do not re-
ceive positive feedback are eventually removed from the population. The elitist
character of GAs is reflected in the way selection for reproduction is performed.
In evolutionary IF systems chromosomes are commonly selected for reproduction
according to their relative fitness. This can be accomplished simply by selecting
a fixed percentage of the most fit chromosomes [6], but to control the pace of
evolution, this percentage may be varied according to the overall filtering perfor-
mance [8]. To more accurately mimic natural evolution, one may assign to each
chromosome reproduction probability proportional to its fitness using roulette
wheel selection [7]. In any case, the most fit individuals are more likely to mate
and produce offspring that inherit their features (keywords). Diversity is pro-
gressively lost as the optimum profile proliferates and takes over the population.
This can cause evolutionary IF systems to overspecialise to one of the topics of
interest and reach a state which inhibits further adaptation.

Fillipo Menczer proposes a remedy to this loss of diversity. Arachnid [1] and
InfoSpiders [9] are two similar systems that use a population of agents that
autonomously crawl the web and filter information on behalf of the user. To
avoid a bias towards the most successful individuals a local selection schema
is adopted. Individuals are not selected for reproduction by comparing their
fitness (e.g. by ranking them according to decreasing weight), but rather, to
reinforce diversity, each individual reproduces once its fitness is over a certain
threshold.

This solution points towards the direction of Artificial Immune Sustems (AIS).
AIS are not meant to be accurate models of the biological immune system, but
use relevant processes and concepts. Simply put2, the main actors of the im-
mune system are antibody molecules that are responsible for recognising a class
of foreign, antigen molecules. In the case of IF, antibodies typically correspond
to user profiles and antigens to information items. How well an antibody recog-
nises an antigen, in other words their affinity to the antigen depends on their
structure. In IF terms, affinity usually corresponds to the relevance score that a
profile assigns to an information item. When the affinity between an antibody
and an antigen is over a threshold the immune system’s primary response is
triggered. The antibody clones rapidly and thus the concentration of successful
antibodies increases. The cloning process is not accurate, but is subjected to
somatic hypermutation that results in slightly different antibodies, possibly a
better match to the invading antigen. Further diversity of antibody repertoire is
maintained through replacement of a percentage of antibodies with new types
of antibodies that the bone marrow produces. With these processes the immune
system achieves adaptive pattern matching in the presence of different types of
antigens.

At the same time the immune system should avoid recognising and destroying
the host organism’s own molecules. This ability for self–non-self discrimination is
what makes the immune system a particularly appealing metaphor . According
to one view, it is achieved through negative selection, that causes immature

2 For more details in AIS see [10,11,12].
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antibodies that match the organism’s molecules to die. Alternatively, Jerne’s
idiotypic network theory suggests that in addition to antigens, antibodies can
recognise other antibodies. The antibody-to-antibody recognition can operate
on multiple levels, forming chains of suppression and reinforcement, creating
complex reaction networks, which regulate the concentration of self-matching
antibodies [13].

AIS are particularly good at maintaining and boosting diversity. This is
achieved in two ways. Heterostasis, the preservation of diversity, is implicitly
accomplished using local selection mechanisms. In accordance with Menczer’s
own solution for reinforcing diversity in GAs, an antibody is typically selected
to clone based on its affinity to an antigen and not its relative importance (fit-
ness) with respect to the rest of the cells. Furthermore, algorithms based on
idiotypic network theory achieve diversity explicitly using suppression of simi-
lar antibodies. Heterogenesis, on the other hand, refers to the introduction of
diversity and is accomplished either through somatic hypermutation, or the re-
cruitment of new cells.

By combining heterostasis with heterogenesis, immune-inspired IF systems
appear well suited to the problem of profile adaptation. With heterostasis suf-
ficient coverage of the information space is achieved for the representation of
a user’s multiple interests, while it is also ensured that new, previously unmet
information items (antigens) can be recognised. Heterogenesis, further facilitates
the exploration of new areas in the information space. By maintaining and boost-
ing diversity, these systems may prove effective in adapting a user profile to both
short-term variations and long-term changes in the user’s interests. They may
prove advantageous, comparing to evolutionary approaches, in maintaining their
viability during adaptation.

This potential in applying AIS to the problem of profile adaptation in content-
based filtering has not been explored yet. Existing immune-inspired approaches
to IF concentrate instead on learning, in a batch mode, to discriminate between
relevant (self) and non-relevant (non-self) information items. In [14] for exam-
ple, AIS have been used for filtering computer generated graphics. Antibodies
and antigens are both modelled as 9 digit, real valued vectors and their affinity
is measured as the maximum arithmetic distance between two matching digits.
[15] applied AIS to the problem of binary document classification. Antibodies
and antigens are binary keyword vectors of fixed length, where some of the bits
are masked with the special “don’t care” symbol #. The affinity between cells is
measured as the percentage of matching bits, ignoring any #. Finally, AIS have
also been applied to the task of email filtering [16]. Here antibodies and antigens
(emails) are both modelled as unweighted keyword vectors of varied length and
their affinity measured as the proportion of common keywords. A similar appli-
cation is described in [17] where antibodies correspond to regular expressions
composed by randomly recombining information from a set of libraries. These
immune-inspired approaches to IF either don’t deal with profile adaptation, or
treat it implicitly with periodic retraining of the profiles.
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3 Nootropia

Nootropia is the first attempt to apply ideas drawn from the immune system
to the problem of profile adaptation to changes in a user’s multiple interests.
The model is described in detail in [5], where it is argued that Nootropia has
common characteristics with computational models of the immune system that
have been developed within the the context of Maturana and Varela’s autopoietic
theory [18]. According to Varela the immune system is not antigen driven, but
instead, an organisationally closed network that reacts autonomously in order to
define and preserve the organism’s identity, in what is called self-assertion [19].
This is achieved through two types of change: variation in the concentration of
antibodies called the dynamics of the system, and, on the other hand, a slower
recruitment of new cells (produced by the bone marrow) and removal of existing
cells, called the metadynamics. While dynamics play the role of reinforcement
learning, the metadynamics function as a distributed control mechanism which
aims at maintaining the viability of the network through an on-going shift in
the immune repertoire [20]. One significant aspect of the immune network’s
metadynamics is that the system itself is responsible for selecting new cells for
recruitment in what is called endogenous selection. In this paper, we only briefly
describe Nootropia’s profile representation and adaptation and concentrate in-
stead on the model’s evaluation.

3.1 Profile Representation

Inspired by Varela’s view of the immune network, in Nootropia, a term network
is used to represent a user’s multiple interests. This profile representation is de-
scribed in detail in [4], along with a process for initialising the network based on
a set of documents that are relevant to the user. It is depicted in figure 1(left).
Terms in the network correspond to antibodies and links denote antibody-to-
antibody recognition. A term’s weight corresponds to the antibody’s concentra-
tion and measures how important the term is regarding the user’s interests. A
link’s weight on the other hand, corresponds to the affinity between antibod-
ies and measures the statistical dependencies that exist between semantically
and syntactically correlated terms. Terms in the network are ordered according
to decreasing weight. This gives rise to separate term hierarchies, one for each
general topic that is discussed in the relevant documents (e.g. two overlapping
topics in fig. 1(left)). This is a significant transformation that is the basis for the
non-linear evaluation of documents according to the represented topics.

More specifically, when confronted with a new document D, profile terms
that appear in D are activated (fig 1(right)). Subsequently, each activated term
disseminates part of its activation to activated terms higher in the hierarchy
that it is linked to. The amount of activation that is disseminated between two
activated terms is proportional to the weight of the corresponding link.

It is then possible to calculate the document’s relevance score based on the
final activation of activated terms. In the simplest case, this is done using equa-
tion 1, where A is the set of activated profile terms, NT the number of terms in
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Fig. 1. Hierarchical Term Network: (left) deactivated, (right) activated

the document, and wi the weight of an activated term ti. Alternatively, additional
evidence derived from the pattern of activation can also be taken into account. In
equation 2, S1(D) is complemented with the additional factor log(1+(b+d)/b).
We call b the “breadth” of the document, that can be estimated as the number
of activated terms that did not disseminate any energy (fig. 1(right): terms DT1,
DT2 and DT3). d stands for the “depth” of the document and is estimated as the
number of activated terms that disseminated energy. Hence, S2(D) which has
been adopted for our experiments, awards documents which activate connected
subnetworks and not isolated terms.

S1(D) =
∑

i∈A wi · Ef
i

log(NT )
(1)

S2(D) = S1D · log(1 +
b + d

b
) (2)

This directed spreading activation process takes into account the term depen-
dencies that the network represents to establish non-linear document evaluation.
How much a term contributes to a document’s relevance score depends not only
on its weight, but also on the term’s place within the hierarchy and its links to
other terms. It depends on the current network structure. This is a property of
the model that distinguishes it from traditional approaches to IF, like the vector
space model, which ignore term dependencies. It has been argued and supported
experimentally that it is this property which allows the effective representation
of multiple topics with a single user profile [4].

3.2 Profile Adaptation

Once the user profile is initialised its life cycle begins and can be used to evaluate
documents. Based on the assigned relevance scores and an appropriate thresh-
old a distinction can be made between relevant (self) and non-relevant (non-self)
documents. Nevertheless, documents are typically presented to the user in de-
creasing relevance order and is left to the user to decide which documents to
read. The user expresses satisfaction, or dissatisfaction, of the filtering results
through relevance feedback. Here we only consider binary feedback3 where the

3 Scaled feedback is also possible.
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user marks viewed documents as either relevant, or not. Changes in the user
interests are reflected by changes in the content of documents that received
user feedback. Nootropia’s adaptation in response to user feedback is achieved
through a process that is described in detail in [5]. In accordance with Varela’s
view, the process is not antigen driven. Relevant documents and their terms
correspond to the production of antibodies by the bone marrow, to which the
immune network reacts structurally.

In summary, the process comprises five deterministic steps. Given a document
that received positive feedback, terms in the document are weighed and those
with weight over a certain threshold are extracted. Some of the extracted terms
already appear in the profile (immune repertoire) and some are new. In the sec-
ond step, we employ a local selection scheme. Each of the profile terms that is also
contained in the document, is selected and its weight (concentration) is increased
by its weight in the document. Terms are not selected based on their relative im-
portance. The overall additional weight is subsequently subtracted evenly from
all profile terms. Therefore, during this step, the overall profile weight remains
constant, but a redistribution of weight towards terms that appear in the rel-
evant document takes place. These variations in the weight (concentration) of
terms (antibodies) correspond to the networks dynamics. They cause changes in
the ordering of terms. Eventually, some terms loose their weight. These terms
are removed from the profile and the sum of their initial weight, i.e. the weight
of each new profile term, is evenly subtracted from the remaining terms. The
fourth step of the process involves the new extracted terms. These are added to
the profile with initial weight equal to their weight in the relevant document.
The recruitment and removal of terms (antibodies) implements the network’s
metadynamics. Finally, links between existing and new terms are generated and
the weight of existing links is updated. It is important to note that due to the
way document evaluation is performed the survival of a newly recruited term
depends not only on its initial weight, but also Î¿̂I 1

2 the current network struc-
ture and Î¿̂I 1

2 the term’s place in it. In other words endogenous selection takes
place since it is the network itself which selects those terms that will survice.

In the case of a document that received negative feedback, only the first three
of the above five steps take place. The process differs in that during the second
step, the weight of profile terms that have been extracted from the document
gets decremented, rather than incremented, by their weight in the document.
The overall subtracted weight is then equally divided among all profile terms.

According to [5] the above process allows the profile to adapt through self-
organisation of the network’s structure. Hierarchies that correspond to topics
that received positive feedback grow, while those that did not receive positive
feedback decline. Such variations in the size of hierarchies can allow the profile
to quickly adapt to short-term variations in user interests. In a similar way,
more substantial long term changes can also be accounted for. A new hierar-
chy may develop when a new topic of interest emerges. On the other hand, a
hierarchy that corresponds to a topic that is no longer interesting progressively
disintegrates and is eventually forgotten. Negative feedback is not essential for
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forgetting a topic, but, as we will see, facilitates the process. The way differ-
ent hierarchical subnetworks are formulated to account for the topics of interest
is reminiscent of the work in [21], where the author describes a deterministic
algorithm for generating meta-stable network structures based on multivariate
data. An extensions of this work has been applied in the context of ubiquitous
computing [22].

Overall, with Nootropia, a single multi-topic profile can be theoretically adap-
ted to both short-term variations and occasional more radical interest changes.
In contrast to evolutionary algorithms, a single structure and not a population of
profiles, is adapted through a deterministic process, rather than through prob-
abilistic genetic operations. It remains to be shown experimentally that this is
indeed an effective approach to profile adaptation.

4 Experimental Evaluation

The main goal of this paper is to demonstrate Nootropia’s ability to adapt
to a variety of interest changes in a user’s multiple interests. For this purpose
we needed an evaluation methodology that reflects the multimodal and time
dependent nature of this problem. Unfortunately no existing evaluation standard
fulfilled our requirement. Even the adaptive filtering track of the well established
Text Retrieval Conference, concentrates on evaluating the ability of a profile,
that represents a single topic category, to adapt to modest changes in the content
of documents about that topic. It does not simulate radical changes in a user’s
multiple interests. For the evaluation of Nootropia and other biologically inspired
solutions to IF a more challenging setting is required. After all, the removal of
the filtering track from the last TREC conferences leaves a gap in the evaluation
of adaptive IF systems.

4.1 Evaluation Methodology

The evaluation methodology uses virtual users and a variation of the routing
subtask of the 10th TREC’s (TREC-2001) filtering task4. TREC-2001 adopts
the Reuters Corpus Volume 1 (RCV1), an archive of 806,791 English language
news stories5, which have been manually categorised according to topic, region,
and industry sector. The TREC-2001 filtering track is based on 84 out of the
103 RCV1 topic categories. Furthermore, it divides RCV1 into 23,864 training
stories and a test set comprising the rest of the stories.

Since changes in a user’s interests are reflected by variations in the distribution
of feedback documents about different topics, then we may simulate a virtual
user’s interests in the following way. Given RCV1’s classification, a virtual user’s
current interests may be defined as a set of topics (e.g. R1/R2/R3) [23]. A
radical, long-term change of interest may then be simulated by removing, or
adding, a topic to this set. For example, if the user is no longer interested in
4 For more details see: http://trec.nist.gov/data/t10 filtering/T10filter guide.htm
5 http://about.reuters.com/researchandstandards/corpus/index.asp
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Table 1. Simulated interest changes

Learn two topics in parallel Learn a new topic
l.1 R6/R21 n.1 R6/R21 → R6/R21/R20
l.2 R10/R32 n.2 R10/R32 → R10/R32/R50
l.3 R41/R79 n.3 R41/R79 → R41/R79/R58
l.4 R26/R68 n.4 R26/R68 → R26/R68/R1
l.5 R23/R37 n.5 R23/R37 → R23/R37/R41
l.6 R44/R53 n.6 R44/R53 → R44/R53/R79

Forget a topic Penalise a topic
f.1 R6/R21/R20 → R6/R21 p.1 R6/R21/R20 → R6/R21/¬R20
f.2 R10/R32/R50 → R10/R32 p.2 R10/R32/R50 → R10/R32/¬R50
f.3 R41/R79/R58 → R41/R79 p.3 R41/R79/R58 → R41/R79/¬R58
f.4 R26/R68/R1 → R26/R68 p.4 R26/R68/R1 → R26/R68/¬R1
f.5 R23/R37/R41 → R23/R37 p.5 R23/R37/R41 → R23/R37/¬R41
f.6 R44/R53/R79 → R44/R53 p.6 R44/R53/R79 → R44/R53/¬R79

topic R3, then we may denote such a change as R1/R2/R3 → R1/R2. Similarly,
we present here results for four kinds of simulated interests (or tasks) and six
sets of topics (table 1). In an attempt to overcome known problems with the
large number of test documents per topic in RCV1 [24], we have chosen instead
topics with a small number of relevant documents.

The first task involves virtual users with parallel interest in two topics. It
does not simulate a radical change of interest, but tests the ability of the system
to learn two topics simultaneously and adapt to short-term variations in the
user’s level of interest in these topics. In the second task, the initial interest in
two topics is followed by the emergence of a third topic of interest. As already
described in the example, in the third task the virtual user is no longer interested
in one of the initial three topics. The fourth kind of interest change is similar to
the third, with the difference that the virtual user explicitly indicates the change
of interest through negative feedback (denoted with “¬”).

For each of the above tasks we start with an empty profile that is subsequently
adapted to the initial set of interesting topics. For that purpose we use a set of
documents comprising the first 30 documents per topic in RCV1’s training set.
The documents are ordered according to publication date and therefore their
distribution is not homogeneous, but rather reflects the temporal variations in
the publication date of documents about each topic. It simulates fast, short-term
variations in the virtual user’s interests. For tasks that include radical changes in
the virtual user’s interests (tasks n, f and p), the same process is subsequently
executed using the first 30 training documents per topic in the set following the
change of interest. Training documents that correspond to negated topics have
been used as negative feedback.

During the first adaptation phase for task l and the second for tasks n, f
and p, the profile is used every five training documents to filter the complete
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Fig. 2. Learning two topics in parallel: a) l.1 b) l.2 c) l.3 d) l.4 e) l.5 f) l.6

test set. It is then evaluated on the basis of an ordered list of the best 30006

scoring documents, using the Average Uninterpolated Precision (AUP) measure.
The AUP is defined as the sum of the precision value–i.e. percentage of filtered
documents that are relevant–at each point in the list where a relevant document
appears, divided by the total number of relevant documents. AUPs absolute
value depends on the number of relevant documents and consequently, no direct
comparison between the AUP scores of different topics can be made. Instead, we
concentrate on how each topic’s score changes during the adaptation phase. Note
also that the above evaluation methodology is deterministic and will produce the
same results for a specific evaluation task and profile configuration.

4.2 Results

The proposed evaluation methodology is an attempt to take into account the
multi-modal and time-dependent nature of the profile adaptation problem. It
tests, in a controlled and reproducible fashion, the ability of a profile to learn
multiple topics in parallel and adapt to a variety of interest changes. Here it is
used to evaluate a profile based on Nootropia (denoted C) and a baseline version
(denoted V) where links between terms are ignored. With their comparison we
wish to highlight the importance of adopting a network structure.

Figures 2 to 5 present the experimental results. Each graph depicts for each
topic the fluctuation of AUP score (Y-axis) as the number of feedback documents
that have been processed increases (X-axis). Whenever required a second Y-axis
has been used to account for large differences in the AUP score of topics. For tasks
n, f and p, the figures present for visualisation reasons the average AUP score
for the two persistent topics of interest in each case (depicted with dashed line).
6 This number has been increased from 1000 according to TREC’s guidelines to 3000

as an additional remedy to problems deriving from the large number of relevant
documents per topic in RCV1.
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Fig. 3. Learning a third topic of interest: a) n.1 b) n.2 c) n.3 d) n.4 e) n.5 f) n.6
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Fig. 4. Forgetting the third topic of interest: a) f.1 b) f.2 c) f.3 d) f.4 d) f.5 f) f.6

This facilitates the comparison between C and V, but obscures fluctuations in
the individual scores of the persistent topics.

The results indicate that through self-organisation Nootropia can adapt suc-
cessfully to a variety of changes in the user interests. Figure 2 indicates that two
topics of interest can be learned in parallel. In most cases, despite fluctuations
the final AUP of the involved topics is larger than zero. We can also observe
that the fluctuations in score between topics in the same task are usually sym-
metric. Although they are exaggerated due to the fixed number of evaluation
documents7, they are nevertheless indicative of the profile’s ability to quickly
adapt to short-term variations in the user’s interests.

7 Documents relevant to each topic compete for a place in the list of 3000 evaluation
documents.
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Fig. 5. Negating the third topic of interest: a) p.1 b) p.2 c) p.3 d) p.4 e) p.5 f) p.6

According to figure 3, learning a new, emerging topic of interest can also be
handled. In all cases the score of the new topic (bold line) shows an overall
increase. In addition to symmetric short-scale fluctuations between the scores
of the new and existing topics, we observe in many cases an overall drop in the
average score of the existing topics. Like before, this is partially due to the fixed
number of evaluation documents. Nevertheless, with the exception of task n.2,
the profile represents all three topics at the end of the adaptation phase.

The results for the third task are equally promising (fig. 4). Nootropia seems
able to forget a no longer interesting topic. In all cases, there is an overall drop in
the AUP score of the topic that no longer receives positive feedback (bold line).
It is usually followed by an increase in the score of the remaining two topics
for reasons already explained. However, only in tasks f.3 and f.6 is the waning
topic completely forgotten. In the rest of the cases a longer adaptation period
might be necessary. When, on the other hand, the no longer interesting topics
explicitly receive negative feedback, we observe a larger overall decrease in their
score (fig. 5). This is clear in all cases. Now only in tasks p.1 and p.4 isn’t the
no longer interesting topic completely forgotten.

Finally, the comparison between the full version (C) and its baseline version
(V), where links between terms are ignored, produced interesting results. For
most tasks C outperforms V. This finding demonstrates the importance of links
not only for representing multiple topics8, but also when adapting to changes in
them. It highlights the significance of the network structure and of the additional
information that it encodes, in defining and preserving the user’s interests. There
are however, inconsistencies in the performance of C over V. For example, the
fourth combination of topics (R1/R29/R68) did not produce positive results
in any of the tasks (graph d in figures 2, 3, 4 and 5). This inconsistency in
performance prompts us for further improvements in the model, like maintaining
only links with large weights and calibrating term and link weights.
8 As it is also argued in [4].
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5 Summary and Future Research

In adaptive IF, user profile adaptation to changes in the user’s interests poses a
challenging and fascinating research problem that invites the application of bio-
logically inspired solutions. In this paper we evaluated the ability of an immune-
inspired user profiling model, called Nootropia, to adapt to various changes in a
user’s multiple interests. The evaluation methodology that we employed is based
on the routing subtask of TREC 2001, but extends it in various ways. It modi-
fies it to reflect the multi-modal and time dependent nature of adaptive IF. The
results demonstrate that Nootropia exhibits the wanted adaptive behaviour. It
can learn two topics in parallel and reflect their short-term variations, learn an
emerging topic of interest, and forget a no longer interesting topic. In this later
case negative feedback is not necessary, but it facilitates the process. They also
demonstrate the importance of links and of the network structure that terms
and links compose.

We may argue that this first attempt to apply immune-inspired ideas to the
problem of adaptive IF has been promising and is worth further investigation.
Nootropia, a self-organising network of terms that exhibits dynamics, metady-
namics, endogenous selection and other properties in common with Varela’s view
of the immune network, performed satisfactory in the task of adapting to sim-
ulated changes in a user’s multiple interests. The evaluation methodology itself
poses a challenging setting for the evaluation of biological inspired algorithms
in general. We wish to improve and standardise this methodology to conduct
comparative experiments between Nootropia and an evolutionary approach. We
seek to provide further evidence that the ability of AIS to boost and maintain
diversity, in contrast to the elitist character of GAs, proves advantageous given
the challenge of adaptive IF. In general, we hope to promote further constructive
interaction between biologically inspired computing and IF.
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Abstract. We present a novel approach to incremental document maps
creation, which relies upon partition of a given collection of documents
into a hierarchy of homogeneous groups of documents represented by
different sets of terms. Further each group (defining in fact separate con-
text) is explored by a modified version of the aiNet immune algorithm
to extract its inner structure. The immune cells produced by the algo-
rithm become reference vectors used in preparation of the final document
map. Such an approach proves to be robust in terms of time and space
requirements as well as the quality of the resulting clustering model.

1 Introduction

Analyzing the number of terms per query in one billion accesses to the Altavista
site, [10], it was observed that in 20.6% queries no term was entered; one quarter
used just one term in a search, and the average was not much higher than two
terms! This justifies our interest in looking for a more ”user-friendly” interfaces
to web-browsers.

According to so-called Cluster Hypothesis, [16], relevant documents tend to be
highly similar to each other, and therefore tend to appear in the same clusters.
Thus, it is possible to reduce the number of documents that need to be compared
to a given query, as it suffices to match the query against cluster representatives
first. However such an approach offers only technical improvement in searching
relevant documents. A more radical improvement can be gained by using so-
called document maps, [2], where a graphical representation allows additionally
to convey information about the relationships of individual documents or group
of documents. Document maps are primarily oriented towards visualization of a
certain similarity of a collection of documents, although other usage of such the
maps is possible – consult Chapter 5 in [2] for details.

The most prominent representative of this direction is the WEBSOM project.
Here the Self-Organizing Map (SOM [14]), algorithm is used to organize mis-
cellaneous text documents onto a 2-dimensional grid so that related documents
appear close to each other. Each grid unit contains a set of closely related doc-
uments. The color intensity reflects dissimilarity among neighboring units: the
lighter shade the more similar neighboring units are. Unfortunately this approach

H. Bersini and J. Carneiro (Eds.): ICARIS 2006, LNCS 4163, pp. 432–445, 2006.
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is time and space consuming, and rises questions of scaling and updating of doc-
ument maps (although some improvements are reported in [15]). To overcome
some of these problems the DocMINER system was proposed in [2].

In our research project BEATCA, [13], oriented towards exploration and nav-
igation in large collections of documents a fully-fledged search engine capable of
representing on-line replies to queries in graphical form on a document map has
been designed and constructed [12]. A number of machine-learning techniques,
like fast algorithm for Bayesian networks construction [13], SVD analysis, Grow-
ing Neural Gas (GNG) [9], SOM algorithm, etc., have been employed to realize
the project. BEATCA extends the main goals of WEBSOM by a multilingual
approach, new forms of geometrical representation (besides rectangular maps,
projections onto sphere and torus surface are possible); further we experimented
with various modifications of the entire clustering process by using the SOM,
GNG and immune algorithms.

In this paper we focus on some problems concerning application of an immune
algorithm to extract clustering structure. In section 2 we present our hierarchical,
topic-sensitive approach, which appears to be a robust solution to the problem
of scalability of map generation process (both in terms of time complexity and
space requirements). It relies upon extraction of a hierarchy of concepts, i.e. al-
most homogenous groups of documents described by unique sets of terms. To
represent the content of each context a modified version the aiNet [7] algorithm
was employed – see section 3. This algorithm was chosen because of its ability
of representing internal patterns existing in a training set. To evaluate the ef-
fectiveness of the novel text clustering procedure, it has been compared to the
aiNet and SOM algorithms in section 4. In the experimental sections 4.5-4.7 we
have also investigated issues such as evaluation of immune network structure
and the influence of the chosen antibody/antigen representation on the resulting
immune memory model. Final conclusions are given in section 5.

2 Contextual Local Networks

In our approach – like in many traditional IR systems – documents are mapped
into m-dimensional term vector space. The points (documents) in this space
are of the form (w1,d, ..., wm,d) where m stands for the number of terms, and
each wt,d is a weight for term t in document d, so-called term frequency/inverse
document frequency (tfidf) weight:

wt,d = w(t, d) = ftd · log
(

N

ft

)
(1)

where ftd is the number of occurrences of term t in document d, ft is the number
of documents containing term t and N is the total number of documents.

The vector space model has been criticized for some disadvantages, polysemy
and synonymy, among others, [3]. To overcome these disadvantages a contextual
approach has been proposed relying upon dividing the set of documents into
a number of homogenous and disjoint subgroups each of which is described by
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unique subset of terms. In the sequel we will distinguish between hierarchical and
contextual model. In the former the set of terms, with tfidf weights (eq. (1)),
is identical for each subgroup of documents, while in the later each subgroup is
represented by different subset of terms weighted in accordance with the equation
(3). Finally, when we do not split the entire set of documents and we construct a
single, ”flat”, representation for whole collection – we will refer to global model.

The contextual approach consists of two main stages. At first stage a hierar-
chical model is built, i.e. a collection D of documents is recurrently divided –
by using Fuzzy ISODATA algorithm [4] – into homogenous groups consisting of
approximately identical number of elements. Such a procedure results in a hier-
archy represented by a tree of clusters. The process of partitioning halts when
the number of documents inside each group meets predefined criteria1. To com-
pute the distance dist(d, c) of a document d from a centroid c, the next function
was used: dist(d, c) = 1− < d/||d||, c/||c|| >, where the symbol < ·, · > stands
for the dot-product of two vectors. Given mdG the degree of membership of a
document d to a group G this document is assigned to the group with highest
value of mdG.

The second phase of contextual document processing is division of terms space
(dictionary) into – possibly overlapping – subspaces of terms specific to each
context (i.e. the group extracted in previous stage). The fuzzy membership level,
mtG, representing importance of a particular term t in a given context G is
computed as:

mtG =
∑

d∈G (ftd · mdG)
fG ·∑d∈G mdG

(2)

where fG is the number of documents in the cluster G, mdG is the degree of
membership of document d to group G, ftd is the number of occurrences of term
t in document d. We assume that a term t is relevant for a given context G if
mtG > ε, where ε is a parameter.

Removing non-relevant terms leads to the topic-sensitive reduction of the di-
mension of the terms space. This reduction results in new vector representation of
documents; each component of the vector is computed according to the equation:

wtdG = ftd · mtG · log
(

fG

ft · mtG

)
(3)

where ft is the number of documents in the group G containing term t.
To depict similarity relation between contexts (represented by a set of con-

textual models), additional ”global” map is required. Such a model becomes the
root of contextual maps hierarchy. Main map is created in a manner similar to
previously created maps with one distinction: an example in training data is a
weighted centroid of referential vectors of the corresponding contextual model:
xi =

∑
c∈Mi

(dc · vc), where Mi is the set of cells in i-th contextual model, dc is
the density of the cell and vc is its referential vector.
1 Currently a single criterion saying that the cardinality ci of i-th cluster cannot exceed

a given boundaries [cmin, cmax]. This way the maps created for each group at the
same level of a given hierarchy will contain similar number of documents.
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The whole process of learning contextual model is to some extent similar to
hierarchical learning [11]. However, in our approach each constituent model, and
the corresponding contextual map, can be processed independently (particularly,
in parallel). Also a partial incremental update of such model appears to be much
easier to perform, both in terms of model quality, stability and time complexity.
The possibility of incremental learning stems from the fact that the very nature
of the learning process is iterative. So if new documents come, we can consider the
learning process as having been stopped at some stage and it is resumed now with
all the documents. We claim that it is not necessary to start the learning process
from scratch neither in the case that the new documents ”fit” the distribution
of the previous ones nor when their term distribution is significantly different.
This claim is supported by experimental results presented e.g in [13].

3 Immune Approach to Text Data Clustering

One of main goals of the BEATCA project was to create multidimensional doc-
ument maps in which geometrical vicinity would reflect conceptual closeness of
documents in a given document set.

In SOM algorithm, [14] each unit of an m×m grid contains so-called reference
vector vi, whose dimension agrees with the dimension of training examples. The
training examples are repeatedly presented to the network until a termination
criterion is satisfied. When an example x(t) is presented at time t to the network,
its reference vectors are updated according to the rule

vi(t + 1) = vi(t) + αi(t) · (x(t) − vi(t)) , i = 1, ..., |m| × |m| (4)

where αi(t) is so-called learning rate varying according to the recipe: αi(t) =
ε(t) · exp

(
− d(i,w)

σ2(t)

)
. Here ε(t) and σ(t) are two user defined monotone decreas-

ing functions of time called, respectively, step size (or cooling schedule) and
neighborhood radius. The symbol d(i, w) stands for the distance (usually Man-
hattan distance) between i-th unit and so-called winner unit (i.e. the unit which
reference vector is most similar to the example x(t)).

The main deficiencies of SOM are (cf. [1]): (a) it is order dependent, i.e. the
components of final weight vectors are affected by the order in which training
examples are presented, (b) the components of these vectors may be severely
affected by noise and outliers, (c) the size of the grid, the step size and the
size of the neighborhood must be tuned individually for each data-set to achieve
useful results, (d) high computational complexity.

GNG [9] uses the same equation (4) to update reference vectors but with
fixed learning rate α. Further its output is rather graph and not a grid. The
main idea is such that starting from very few nodes (typically, two), one new
node is inserted ever λ iterations near the node featuring the local local error
measurement. There is also a possibility to remove nodes: every λ iterations the
node with lowest utility for error reduction is removed. The main disadvantages
of GNG are (cf. [1]): (a) in comparison with SOM it requires larger number of
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control parameters which should be tuned, (b) because of fixed learning rate
it lacks stability, (c) rather elaborated technique for visualizing resulting graph
must be invented.

An immune algorithm is able to generate the reference vectors (called anti-
bodies) each of which summarizes basic properties of a small group of documents
treated here as antigens2 . This way the clusters in the immune network spanned
over the set of antibodies will serve as internal images, responsible for mapping
existing clusters in the document collection into network clusters. In essence,
this approach can be viewed as a successful instance of exemplar-based learning
giving an answer to the question ”what examples to store for use during gener-
alization, in order to avoid excessive storage and time complexity, and possibly
to improve generalization accuracy by avoiding noise and overfitting”, [17].

3.1 aiNet Algorithm for Data Clustering

The artificial immune system aiNet [7] mimics the processes of clonal selection,
maturation and apoptosis [8] observed in the natural immune system. Its aim is
to produce a set of antibodies binding a given set of antigens (i.e. documents).
The efficient antibodies form a kind of immune memory capable to bind new
antigens sufficiently similar to these from the training set.

Like in SOM, the antigens are repeatedly presented to the memory cells (being
matured antibodies) until a termination criterion is satisfied. More precisely, a
memory structure M consisting of matured antibodies is initiated randomly with
few cells. When an antigen agi is presented to the system, its affinity aff (agi, abj)
to all the memory cells is computed. The value of aff (agi, abj) expresses how
strongly the antibody abj binds the antigen agi. From a practical point of view
aff (agi, abj) can be treated as a degree of similarity between these two cells3.
The greater affinity aff (agi, abj), the more stimulated abj is.

The idea of clonal selection and maturation translates into next steps (here
σd, and σs are parameters). The cells which are most stimulated by the antigen
are subjected to clonal selection (i.e. each cell produces a number of copies
proportionally to the degree of its stimulation), and each clone is subjected to
mutation (the intensity of mutation is inversely proportional to the degree of
stimulation of the mother cell). Only clones cl which can cope successfully with
the antigen (i.e. aff (agi, cl) > σd) survive. They are added to a tentative memory,
Mt, and the process of clonal suppression starts: an antibody abj too similar to
another antibody abk (i.e. aff (abj , abk) > σs) is removed from Mt. Remaining
cells are added to the global memory M .

These steps are repeated until all antigens are presented to the system. Next
the degree of affinity between all pairs abj , abk ∈ M is computed and again too
2 Intuitively by antigens we understand any substance threatening proper function-

ing of the host organism while antibodies are protein molecules produced to bind
antigens. A detailed description of these concepts can be found in [8].

3 In practical applications this measure can be derived from any metric dissimilarity
measure dist as aff (agi, abj) = dmax−dist(agi,abj)

dmax
, where dmax stands for the maximal

dissimilarity between two cells.



An Immune Network for Contextual Text Data Clustering 437

similar (in fact: redundant) cells are removed from the memory. This step repre-
sents network suppression of the immune cells. Lastly r% (one more parameter)
worst individuals in M are replaced by freshly generated cells. This ends one
epoch, and next epoch begins until a termination condition is met.

Among all the parameters mentioned above the crucial one seems to be the σs

as it critically influences the size of the global memory. Each memory cell can
be viewed as an exemplar which summarizes important features of ”bundles” of
stimulating it antigens.

3.2 Robust Construction of Mutated Antibodies

In case of high-dimensional data, such as text data represented in vector space,
calculation of stimulation level is quite costly (proportional to the number of
different terms in dictionary). Thus, the complexity of an immune algorithm
can be significantly reduced if we could restrict the number of required expensive
recalculations of stimulation level. The direct, high-dimensional calculations can
be replaced by operations on scalar values on the basis of the simple geometrical
observation that a stimulation of a mutated antibody clone can be expressed in
terms of original antibody stimulation.

Such optimization is based on the generalized Pythagoras theorem: if v1, v2,
v3 are the sides of a triangle (v1 + v2 + v3 = 0) then |v3|2 = |v1|2 + |v2|2 −
2|v1||v2|cos(v1, v2). We can define mutated clone m as: m = kd + (1 − k)c,
where c is cloned antibody, d is antigen (document) and k is the mutation level
(random).

Taking advantage of equation (4) and Pythagoras theorem (where v1 := d′ =
k · d, v2 := c′ = (1 − k) · c, v3 := −m) and having calculated original antibody
stimulation aff (c, d), we can calculate mutated clone stimulation level aff (m, d).

Dually, we can find mutation threshold k so that mutated antibody clone stim-
ulation aff (m, d) < σd. Precisely, we are looking for k0 such that aff (m, d) = σd,
which in turn can be used to create mutated antibody for random mutation
level k ∈ (0, k0). The advantage of such an approach is the reduction of the
number of inefficient (too specific) antibodies, which would be created and im-
mediately removed from the clonal memory. Analogically to the previous in-
ference, if we define p :=aff (c, d), x := −p|d| + p2|c| + σ2

d(p|d| − c), y :=
|d|2−2p|c||d|+p2|c|2−σ2

d(|d|2−|c|2+2p|c||d|) and z := σd ·|d|
√

(p2 − 1) · (σ2
d − 1),

then k0 = |c|·(x+z)
y .

3.3 Stabilization Via Time-Dependent Parameters

Typical problem with immune based algorithms is the stabilization of the size
of the memory cells set. This explains why we decided to use time dependent
parameters. For each parameter p, we defined its initial value p0 and the final
value p1 as well as the time-dependent function f(t), such that p(t) = f(t) and
p(0) = p0, p(T ) = p1 where T is the number of learning iterations.

In particular, both σs(t) and σd(t) are reciprocally increased, while mb(t)
– the number of clones produced by a cell – is linearly decreased with time:
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σ(t) = σ0 + (σ1 − σ0) · t·(T+1)
T ·(t+1) and mb(t) = m0 + m1−m0

T · t, where σ0 = 0.05,
σ1 = 0.25 for σs(t); σ0 = 0.1, σ1 = 0.4 for σd(t); m0 = 3, m1 = 1 for mb(t).

4 Experimental Results

In the following sections, the overall experimental design as well as quality mea-
sures are described. Since immune network can be treated both as a clustering
and a meta-clustering (clusters of clusters) model, beside commonly used clus-
tering quality measures (unsupervised and supervised), we have also investigated
immune network structure. The discussion of results is given in Sect. 4.3-4.7.

4.1 Quality Measures of the Clustering

Various measures of quality have been developed in the literature, covering di-
verse aspects of the clustering process. The clustering process is frequently re-
ferred as ”learning without a teacher”, or ”unsupervised learning”, and is driven
by some kind of similarity measure. The optimized criterion is intended to reflect
some esthetic preferences, like: uniform split into groups (topological continuity)
or appropriate split of documents with known a priori categorization. As the
criterion is somehow hidden, we need tests if the clustering process really fits
the expectations. In particular, we have accommodated for our purposes and
investigated the following well known quality measures of clustering [19,5]:

Average Document Quantization: average cosine distance (dissimilarity) for
the learning set between a document and the cell it was classified into.

This measure has values in the [0,1] interval, the lower values correspond re-
spectively to more ”smooth” inter-cluster transitions and more ”compact” clus-
ters. The two subsequent measures evaluate the agreement between the clustering
and the a priori categorization of documents (i.e. particular newsgroup in case of
newsgroups messages).
Average Weighted Cluster Purity: average ”category purity” of a cell (cell
weight is equal to its density, i.e. the number of assigned documents): AvgPurity =
1

|D|
∑

n∈N maxc (|Dc(n)|), where D is the set of all documents in the corpus and
Dc(n) is the set of documents from category c assigned to the cell n. Similarly,
Average Weighted Cluster Entropy measure can be calculated, where the Dc(n)
term is replaced with the entropy of the categories frequency distribution.
Normalized Mutual Information: the quotient of the entropy with respect
to the categories and clusters frequency to the square root of the product of
category and cluster entropies for individual clusters [5].

Again, both measures have values in the [0,1] interval. The higher the value
is, the better agreement between clusters and a priori given categories.

4.2 Quality of the Immune Network

Beside the clustering structure represented by cells, idiotypic network should be
also treated as a meta-clustering model. Similarity between individual clusters is
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expressed by graph edges, linking referential vectors in antibodies. Thus, there
is a need to evaluate quality of the structure of the edges.

There is a number of ways to evaluate idiotypic model structure. In this paper
we present the one which we have found to be the most clear for interpretation.
This approach is based on the analysis of the edge lengths of the minimal span-
ning tree (MST) constructed over the set of antibodies, in each iteration of the
learning process.

4.3 Experimental Settings

The architecture of BEATCA system supports comparative studies of clustering
methods at the various stages of the process (i.e. initial document grouping,
initial topic identification, incremental clustering, graph model projection to
2D map and visualization, identification of topical areas on the map and its
labeling) – consult [13] for details. In this paper we focus only on the evaluation
and comparison of the immune models.

This study required manually labelled documents, so the experiments were
executed on a widely-used 20 Newsgroups document collection4 of approxi-
mately 20 thousands newsgroup messages, partitioned into 20 different news-
groups (about 1000 messages each). As a data preprocessing step in BEATCA
system, entropy-based dimensionality reduction techniques are applied [12], so
the training data dimensionality (the number of distinct terms used) was 4419.

Each immune model have been trained for 100 iterations, using previously
described algorithms and methods.

4.4 Impact of the Time-Dependent Parameters

In the first two series of experiment, we compared models built with time-
dependent parameters σs(t) and σd(t) with the constant, a priori defined values
of σs and σd. As a reference case we took a model where σs(t) was changed from
the initial value 0.05 up to 0.25 and σd(t) from 0.1 up to 0.4 (cf. section 3.3).

First, we compare the reference model and the four models with constant σd.
Parameter σs has been changed identically as in reference model. The values of
σd varied from the starting value in the reference model (0.1) up to the final
value (0.4) by 0.1 step. The results5 are presented in Figure 1.

Fig. 1(a) presents variance of the edge length in the minimal spanning tree built
over the set of antibodies in the immune memory in ith iteration of the learning
process. At first glance one can notice instability of this measure for high val-
ues of σd. Comparing stable values, we notice that the variance for the reference
network has the highest value. It means that the idiotypic network contains both
short edges, connecting clusters of more similar antibodies and longer edges, link-
ing more distant antibodies, probably stimulated by different subsets of docu-
ments (antigens). Such meta-clustering structure is desirable and preferred over
networks with equidistant antibodies (and, thus, low edge length variance).
4 http://people.csail.mit.edu/jrennie/20Newsgroups/
5 All figures present average values of the respective measures in 20 contextual nets.
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Fig. 1. Time-dependent σd: (a) edge length variance (b) network size (c) quantization
error (d) learning time

Comparing network sizes, Fig. 1(b), and quantization error, Fig. 1(c), we
observe that for the highest values of σd, the set of antibodies reduces to just
a few entities; on the other hand - for the lowest values almost all antibodies
(universal and over-specialized) are retained in the system’s memory. It is not
surprising that the quantization error for a huge network (e.g. σd = 0.1) is
much lower than for smaller nets. Still, the time-dependent σd(t) gives similarly
low quantization error for moderate network size. Also, both measures stabilize
quickly during learning process. Learning time, Figure 1(d), is – to some extent
– a function of network size. Thus, for the reference model, it is not only low
but very stable over all iterations.
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Fig. 2. Time-dependent σs: (a) edge length variance (b) network size (c) quantization
error (d) learning time

In the next experiment – dually – we compare reference model and another
five models with constant σs (and varying σd). Analogically to the first case,
the values of σs varied from the initial value 0.05 up to the final value in the
reference model 0.25 by 0.05 step. The results are presented in Fig. 2. Due to the
space limitations, we restrict the discussion of the results to the conclusion that
also in this case time-dependent parameter σs(t) had a strong, positive influence
on the resulting immune model.

A weakness of the approach seems to be the difficulty in selecting appropriate
values of the parameters for a given dataset. We investigated independently
changes to the values of both parameters, but it turns out that they should be
changed ”consistently”; that is the antibodies should not be removed too quickly,
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nor aggregated too quickly. However, once found, there is a justified hope that
for an incrementally growing collection of documents the parameters do not need
to be sought anew, but rather gradually adopted.

4.5 Scalability and Comparison with Global Models

Comparing hierarchical and contextual models described in section 2, with a
”flat”, global model the most noticeable difference is the learning time6. The total
time for 20 contextual networks accounted for about 10 minutes, against over 50
minutes for hierarchical network and almost 20 hours (sic!) for a global network.
Another disadvantage of the global model is high variance of the learning time at
single iteration as well as the size of the network. The learning time varied from
150 seconds to 1500 seconds (10 times more!) and the final network consisted of
1927 antibodies (two times more than for contextual model). It should also be
noted that in our experimental setting, each model (local and global) has been
trained for 100 iterations, but it can be seen (e.g. Figure 4) that the local model
stabilizes much faster. Recalling that each local network in the hierarchy can be
processed independently and in parallel, it makes contextual approach robust
and scalable7 alternative to the global immune model.

One of the reasons for such differences of the learning time is the representa-
tion of antibodies in the immune model. The referential vector in an antibody is
represented as a balanced red-black tree of term weights. If a single cell tries to
occupy ”too big” portion of a document-term vector space (i.e. it covers docu-
ments belonging to different topics), many terms which rarely co-occur in a single
document have to be represented by a single red-black tree. Thus, it becomes
less sparse and - simply - bigger. On the other hand, better separation of terms
which are likely to appear in various topics and increasing ”crispness” of topical
areas during model training leads to faster convergence and better models, in
terms of previously defined quality measures. While the quantization error is
similar for global and contextual model (0.149 versus 0.145, respectively), then
both supervised measures - showing correspondence between documents labels
(categories) and clustering structure - are in favor to contextual model. The fi-
nal value of the Normalized Mutual Information was 0.605 for the global model
and 0.855 for the contextual model and Average Weighted Cluster Purity: 0.71
versus 0.882 respectively.

We have also executed experiments comparing presented immune approach
with SOM models: flat (i.e. standard, global Kohonen’s map) and our own vari-
ant of contextual approach - the hierarchy of contextual maps (C-SOM). To
compare immune network structure, with the static grid of SOM model, we
have built minimal spanning tree on the SOM grid. Summary of the results can
be seen in Figure 3. Again, global model turned out to be of lower quality than

6 By learning time we understand the time needed to create an immune memory
consisting of the set of antibodies representing the set of antigens (documents).

7 Especially with respect to growing dimensionality of data, what - empirically - seem
to be the most difficult problem for immune-based approach.
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both contextual SOM and contextual AIS model. Similarly to the global im-
mune model, also in this case the learning time (over 2 hours) was significantly
higher than for the contextual models. Surprisingly, the average edge in contex-
tual SOM model was much longer than in case of contextual immune network
and standard SOM, what may be the result of the limitations of the rigid model
topology (2D grid). The discussion of the edge length distribution (Figure 3(b))
we defer to the section 4.7.
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4.6 Contextual Versus Hierarchical Model

The next series of experiments compared contextual model with hierarchical
model. Figures 4(a) and 4(b) presents network sizes and convergence (wrt Aver-
age Document Quantization measure) of the contextual model (represented by
black line) and hierarchical model (grey line).

20 40 60 80 100

10
0

12
0

14
0

16
0

18
0

20
0

Iterations

Va
lue

contextual
hierarchical

20 40 60 80 100

0.0
0.1

0.2
0.3

0.4
0.5

Iterations

Va
lue

contextual
contextual  [test]
hierarchical
hierachical [test]
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Although convergence to the stable state is fast in both cases and the quanti-
zation error is similar, it should be noted that this error is acquired for noticeably
smaller network in contextual case (and in shorter time, as mentioned in previous
section).

However, the most significant difference is the generalization capability of
both models. For this experiment, we have partitioned each context (group of
documents) into training and test subsets (in proportion 10:1). Training docu-
ments were used during learning process only, while the quantization error was
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computed for both subsets. The results are shown in Figure 4(b) – respective
learning data sets are depicted with black lines while test data sets with grey
lines. Nevertheless quantization error for learning document sets are similar, the
difference lies in test sets and the hierarchical network is clearly overfitted. Again,
there’s no room to go into detailed study here, but it can be shown that this un-
desirable behavior is the result of the noised information brought by additional
terms, which finally appears to be not meaningful in the particular context (and
thus are disregarded in contextual weights wdtG).

4.7 Immune Network Structure Investigation

To compare robustness of different variants of immune-based models, in each
learning iteration, for each of the immune networks: contextual [Fig. 5(b)], hier-
archical [Fig. 5(c)], global [Fig. 5(d)] and MST built on SOM grid [Fig. 3(c)], the
distributions of the edge lengths have been computed. Next, the average length
u and the standard deviation s of the length have been calculated and edges have
been classified into five categories, depending on their length, l: shortest edges
with l ≤ u−s, short with l ∈ (u−s, u−0.5s], medium with l ∈ (u−0.5s, u+0.5s],
long with l ∈ (u + 0.5s, u + s] and very long edges with l > u + s.

Additionally, in Figure 5(a), we can see average length of the edges for hier-
archical and contextual immune networks (dashed and solid black lines, respec-
tively) and complete graphs on both models’ antibodies (cliques - depicted with
grey lines). Actually, in both cases clustering structure has emerged and the aver-
age length of the edge in the immune network is much lower than in the complete
graph. However, the average length for the contextual network is lower, whereas
variance of this length is higher. It signifies more explicit clustering structure.
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Fig. 5. Edge length distrib.: (a) complete (b) contextual (c) hierarchical (d) global net

There are quite a few differences in edge length distribution. One can notice
than in all models, the number of shortest edges diminishes with time. It is
coherent with the intention of gradual elimination of the redundant antibodies
from the model. However, such elimination is much slower in case of the global
model, what is another reason of slow convergence and high learning time. Also in
case of SOM model, which has a static topology and no removal of inefficient cells
is possible, we can see that the model slowly reduces the number of redundancies,
represented by too similar referential vectors.
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On the extreme side, the dynamics of the longest edges’ distribution is similar
in case of the contextual and the global model, but distinct in case of the hier-
archical model. This last contains much more very long edges. Recalling that
the variance of the edge lengths has been low for this model and the average
length has been high, we can conclude that hierarchical model is generally more
discontinuous. The same is true for the SOM model, which is another indication
of the imperfection of the static grid topology.

5 Concluding Remarks

The contextual model described in this paper admits a number of interesting
and valuable features in comparison with global and hierarchical models used
traditionally to represent a given collection of documents. Further, when apply-
ing immune algorithm to clustering the collection of documents, a number of
improvements was proposed. These improvements obey:

– Identification of redundant antibodies by means of the fast agglomerative
clustering algorithm [13].

– Fast generation of mutated clones without computation of their stimula-
tion by currently presented antigen. These mutants can be characterized by
presumed ability of generalization (cf. section 3.2).

– Time-dependent parameters σd and σs. In general we have no a recipe allow-
ing to tune both the parameters to a given dataset. In original approach [7]
a trial-and-error method was suggested. We observed that in highly dimen-
sional space the value of σd is almost as critical as the value of σs. Hence we
propose a ”consistent” tuning of these parameters – cf. section 3.3. The gen-
eral recipe is: carefully (i.e. not to fast) remove weakly stimulated and too
specific antibodies and carefully splice redundant (too similar) antibodies.

– Application of the CF-trees [18] for fast identification of winners (most stim-
ulated memory cells) [6].

With these improvements we proposed a new approach to mining high dimen-
sional datasets. The contextual approach described in section 2 appears to be
fast, of good quality (in term of indices introduced in sections 4.1 and 4.2) and
scalable (with the data size and dimension).

Clustering high dimensional data is both of practical importance and at
the same time a big challenge, in particular for large collections of text doc-
uments. The paper presents a novel approach, based on artificial immune sys-
tems, within the broad stream of map type clustering methods. Such approach
leads to many interesting research issues, such as context-dependent dictionary
reduction and keywords identification, topic-sensitive document summarization,
subjective model visualization based on particular user’s information require-
ments, dynamic adaptation of the document representation and local similarity
measure computation. We plan to tackle these problems in our future work. It
has to be stressed that not only textual, but also any other high dimensional
data may be clustered using the presented method.
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Abstract. Spam messages are continually filling email boxes of practi-
cally every Web user. To deal with this growing problem, the develop-
ment of high-performance filters to block those unsolicited messages is
strongly required. An Antibody Network, more precisely SRABNET (Su-
pervised Real-Valued Antibody Network), is proposed as an alternative
filter to detect spam. The model of the antibody network is generated
automatically from the training dataset and evaluated on unseen mes-
sages. We validate this approach using a public corpus, called PU1, which
has a large collection of encrypted personal e-mail messages containing
legitimate messages and spam. Finally, we compared the performance
with the well known näıve Bayes filter using some performances indexes
that will be presented.

1 Introduction

A pathogen is a specific causative agent (as a bacterium or virus) of disease. In
the same way a junk email, also commonly called spam and defined typically
as unsolicited and undesired electronic messages, can be seen as some sort of
disease to a personal computer. It tends to require a high percentage of memory
and network packages to store and transmit spam.

Resource allocation apart, spam forces undesired content into our mailboxes,
impairs our ability to communicate freely, and costs Internet users billions of
dollars annually. According to SpamCon foundation, the U.S. businesses lost
about US$4 billion1 in productivity in 2004 because of spam, and those losses
can be even higher without an intervening technology or policy to curb unwanted
messages. Some solutions have been applied to avoid spam like legislation pro-
hibiting the sending of spam and blacklists (lists containing addresses of known
spam senders). Nevertheless, these methods are usually not very effective, once
the spam senders have, in the majority of the cases, “shell addresses’’(i.e. ad-
dresses used once and then discarded), they can change their addresses regularly
to avoid being blacklisted [1].

The problem of detecting spam messages is popular and can be interpreted as
a binary classification task. However, what turns this classification task a hard
1 In SpamCon foundation, http://spamcon.org/ . Accessed in 05/01/2006.

H. Bersini and J. Carneiro (Eds.): ICARIS 2006, LNCS 4163, pp. 446–458, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



An Immunological Filter for Spam 447

one is the large overlapping between these classes and the inherent conceptual
drift of the spam set [2,3]. The most used technique to detect spams is the
Bayesian analysis [4,5,6], but other machine learning techniques have been used
to detect or categorize spams, as Support Vector Machines [7], decision trees
[8,9] and case-based reasoning [3].

If we interpret the spams as pathogens, the use of the natural immune system
as inspiration to develop new methods, to detect or to categorize spam, is well
supported, as can be seen in [10,11,12,13]. Here, we propose the use of a super-
vised version of a Real-Valued Antibody Network [14]. The antibody network
will work as a classifier of new messages.

The paper is organized as follows: in Section 2 the antibody network is pre-
sented together with some previous works; in Section 3 the corpus are described
and its pre-processing methods are described in Section 4; some performance
measures are introduced in Section 5 and the results are presented in Section 6.
Analytical and concluding remarks are outlined in Section 7.

2 Applying the SRABNET to Capture Spam

De Castro et al. [15] proposed a growing artificial binary antibody repertoire
to recognize antigens, which was called AntiBody NETwork (ABNET). Boolean
weights were adopted for antigens and antibodies. Knidel et al. [16] extended
that previous work and proposed real-valued vectors to represent the weights of
the network (RABNET), for data clustering tasks.

In classification problems with labelled samples, it is important to use that
information to improve the performance of the model. Based on this idea, cite-
Knidel2006 proposed a supervised version of the RABNET called SRABNET
(Supervised Real-Valued Antibody Network), which is well suited for such clas-
sification tasks, once it uses the label of the samples during the evolution of the
system.

Inspired by ideas from neural networks and artificial immune systems, the
SRABNET assumes a population of antigens (Ag) to be recognized by an an-
tibody repertoire (Ab) modeled as a one-dimensional competitive supervised
network with real-valued weights. Being a supervised approach, the first differ-
ence from RABNET [16] is that at the beginning of the network adaptation,
while RABNET starts with only one antibody, the SRABNET will present one
antibody assigned to each class. The weights of these initial antibodies are de-
fined by the arithmetic mean taken in the space of attributes from all the data
belonging to the class to which the antibody is assigned.

In summary, the following features are associated with SRABNET:

– Competitive network with supervised learning;
– Constructive network structure, with growing and pruning phases governed

by an implementation of the clonal selection principle; and
– Real-valued connection weights in an Euclidean shape-space [17].

Although there are similar stages in the learning algorithms of RABNET
and SRABNET, the way they are implemented will depend upon the learning
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paradigm: supervised or unsupervised. As SRABNET is founded on supervised
learning, new ideas have been proposed for the stages that follow.

2.1 Weight Updating

The weight updating procedure for SRABNET is similar to the one used in
Learning Vector Quantization (LVQ) [18], [19]. Equation (2) shows the weight
updating rule used here, where α is the learning rate and AbK is the antibody
that wins the competition for representing antigen Ag. In other words, the most
similar antibody is the one that presents the highest affinity (minimum Euclidean
distance) to the given antigen as in equation 1.

K = arg mink ‖Ag − Abk‖ , ∀k (1)

AbK(t + 1) =
{

AbK(t) + α ∗ (Ag − AbK(t)), If Class(Abk) = Class(Ag)
AbK(t) − α ∗ (Ag − AbK(t)), Otherwise. (2)

According to equation 2, if the antibody has the same label, or class, of the anti-
gen which it is recognizing, its weights are updated towards the weight pattern
of the antigen. Otherwise, the antibody is moved away from the antigen in the
shape space.

2.2 Network Growing

The network growing is performed at each epoch. The antibody chosen to be
duplicated is the one that represents an antigen with the lowest affinity (highest
Euclidean distance). The location of the new antibody in the shape space, asso-
ciated with a weight vector, is defined as the midpoint of the straight line con-
necting the antibody to be duplicated and that antigen with the lowest affinity.

In Fig. 1(a-b) the duplication process is depicted; the sample with a circle is
the antigen with the lowest affinity and the cloned antibody is marked with a
square. The new antibody will belong to the class with the maximum number
of elements (antigens) among the elements that will now be represented by this
new antibody. A tie will lead to a random choice of the class. Depending on
the distribution of antigens in the shape space, the class to be attributed to the
newly-generated antibody may differ from the class of its immediate ancestor as
illustrated in Fig. 1(b-c). The dynamic of the whole process to obtain the final
network structure can be seen in Fig. 1(a-h).

2.3 Network Pruning

The pruning on the network occurs when an antibody does not win or when it
does not represent at least one antigen. In supervised learning, each class should
have at least one antibody representing its samples. Based on this requisite, the
pruning process is not performed if the antibody to be pruned is the unique
representative of that class. In a more immunological view, the antibodies that
were not stimulated by any antigen suffer apoptosis.
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Fig. 1. (a-h) Dynamic of the training stage presenting the growing and the re-labeling
process. (i) Performance of the different networks.

2.4 Convergence Criterion

The learning procedure involves a constructive network, and it is a challenging
task to automatically decide when the network should stop growing. To perform
this task, an approach was developed based on two concepts. The first one is the
reference network, that represents the network with the best performance so far.
The other concept is called convergence window and is related to the number
of networks that will have its performances compared to the reference network.
These concepts are illustrated in Fig. 2 and in Fig. 3. The size of the convergence
window defines the number of networks to be compared to the reference network,
and it is the unique user-defined parameter of the algorithm. The performance
evaluation, at this point, is achieved by using only the training dataset.
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Fig. 2. The use of a convergence window to evaluate the stopping criterion

Once defined the size (s) of the convergence window, the approach proposed
here evaluates the performance of networks with increasing numbers of antibod-
ies but restricted to the convergence window. If any of the topologies within this
window presents better performance than a given reference network, the refer-
ence network will then be replaced by the better performance network, as can be
seen in Fig. 3. If none of the topologies within the convergence window presents
better performance than the reference network, the convergence criterion is sat-
isfied and the learning procedure halts, finishing the topology adaptation. In this
case the resultant topology will be the reference network.

Fig. 3. Dynamics of the convergence window and reference network updating
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For example, in Fig. 3 it is assumed a window of size 7. The last reference
network will be the network with 16 antibodies. The networks with 17, 18, 19,
20, 21, 22 and 23 antibodies are evaluated for comparison. Since the classification
performance of these networks are not superior to that produced by the reference
network, the convergence criterion was reached and the resultant topology will
be the network with 16 antibodies. The maximum number of antibodies to be
inserted into the network is given by the quarter part of the dataset size. This
limit of the number of antibodies in the network is a empirical value and was
chosen based on previous tests. In this implementation, the performance criterion
used is the TCR (Total Cost Ratio), that will be better explained in Section 5.

2.5 SRABNET PseudoCode

The steps described in theprevious subsections are presentedhere in a pseudocode
format.

Algorithm 1. Pseudo-code of the SRABNET algorithm

1: Begin
2: Initialization;
3: Initialize the network with one antibody per class, using the training dataset. The

weight vector of each antibody corresponds to the mean of the samples belonging
to the class to which the antibody was assigned;

4: while the convergence criterion is not met do
5: for each input pattern (antigen) do
6: Present a randomly chosen antigen to the network;
7: Calculate the Euclidean distance between the antigen presented and the anti-

bodies in the network;
8: Find the winner antibody according to Eq. (1);
9: Increase the concentration level of the winner;

10: Update the weights of the winner antibody according to Eq. (2);
11: end for
12: Choose the antibody to be cloned. The antibody to be cloned will be the one

that recognizes the antigen with the lowest affinity (highest Euclidean distance);
13: The weight vector of the new antibody is the midpoint between the parent

antibody and the antigen with the lowest affinity;
14: The new antibody will belong to the class with the maximum number of elements

among the ones recognized by the new antibody;
15: if the concentration level of a given antibody is zero and it is not the unique of

its class then
16: prune it from the network
17: end if
18: end while
19: End

Supported by the dynamic behavior illustrated in Fig. 1, the pseudo-code
describes the whole algorithm including the growing and pruning processes.
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3 The Corpus Used

The corpus that will be used to validate the proposal is the PU1 [4]2 corpus and
consists of 1099 messages, with spam rate of 43.77%, divided as follows:

– 481 spam messages. These are all the spam messages over a period of 22
months, excluding non-English messages and duplicates of spam messages
sent on the same day.

– 618 legitimate messages, all in English, over a period of 36 months.

All the messages have header fields and HTML tags removed, leaving only sub-
ject line and mail body text, resulting in 24,748 words in total vocabulary. Each
token was mapped to a unique integer to ensure the privacy of the content. There
are four versions of this dataset: with or without stemming and with or without
stop-word removal. Stop-word removal is a procedure to remove most frequent
used words as ‘and, for, a’ and the stemming is the process of reducing a word
to its root form (e.g. ‘learner’ becomes ‘learn’). These methods are used mainly
to reduce the dimensionality of feature space aiming at improving the classifier’s
prediction. However, Androutsopoulos et al. [4] demonstrated that stop-word
removal and stemming may not promote a statistically significant improvement.
That is why we have adopted in the experiments to be presented, the version
without stemming and stop-word removal, although we have considered a simple
procedure to dimensionality reduction aiming at alleviating the data sparseness
problem.

4 Pre-processing Stage

The pre-processing is an important step in all pattern recognition and infor-
mation retrieval task. In this stage, the dataset and the samples inside it are
turned into some interpretable pattern for the system that will learn from them.
Here, we have conceived this step as the development of a representation for the
samples (Section 4.1) and the reduction of the number of attributes (Section 4.2).

4.1 Messages Representation

The first stage of the design of representation is to define how the messages
will be encoded. Each individual message can be represented as a binary vector
denoting which features were present or absent in the message. This is frequently
referred to as the bag of words approach. A feature in this context is a word, wi,
and each message, xd, is represented as depicted in Eq. 3, where i is the number
of words of the entire corpus and d is the number of documents or messages of
the dataset.

xm = wm1, wm2, . . . , wmi m = 1, 2, . . . , d (3)

2 The PU corpora may be downloaded from http://www.iit.demokritos.gr/skel/i-
config/.
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4.2 Dimensionality Reduction

When we are dealing with textual information, the feature space tends to be
large, usually on the order of several thousands of attributes (words). Hence, a
method to reduce this number of attributes is required. According to [20] the
attributes that appear in most of the files are not relevant in order to separate
these documents because all the classes have instances that contain those at-
tributes. In addition, as we are working with only two different classes (spam
and legitimate), words that appear rarely in the files have a low weight in the
identification of the class. So, the attributes that appear less than 5% and more
than 95% in all documents of the corpus were removed. At the final, the di-
mension of the feature vectors is 751. The benefit of dimension reduction also
includes, in some cases, an improvement in prediction accuracy [21].

5 Performance Measures

Once generated a classifier, it is necessary to obtain some indexes that can
measure its performance and facilitate the comparison with other classifiers. In
pattern recognition and information retrieval, when there are multiple categories,
performance measures such as recall and precision are used. Although spam
detection is a binary classification task, these measures will be used here to
estimate the accuracy of the methods.

We will adopt the same notation used in [4,22], using L and S to represent
legitimate and spam message respectively; and nL→S (legitimate to spam or
false positive) and nS→L (spam to legitimate or false negative) to denote the
two error types, respectively. Then, the spam recall and the spam precision are
defined here as follows in equations 4 and 5.

SR =
nS→S

nS→S + nS→L
(4)

SP =
nS→S

nS→S + nL→S
(5)

In anti-spam filtering, misclassifying a legitimate mail as spam is worse than
letting a spam message pass the filter. If a spam goes through the filter, the only
inconvenience that it may cause is the time wasted to remove that message from
the inbox. However, if an important legitimate mail message was misclassified, a
real disaster can happen. When the error types (false positive and false negative)
have distinct relevance the usual precision and recall measures can not express
well the performance and it is necessary to adopt some cost sensitive evaluation
measures.

Androutsoupoulos et al. [4] introduced a weighted accuracy measure (WAcc)
that assign to false positive a higher cost than false negative and has been used
in some spam filtering benchmarks [4,8,22]. WAcc is defined as:

WAcc =
λ.nL→L + nS→S

λ.NL + NS
, WErr =

λ.nL→S + nS→L

λ.NL + NS
(6)



454 G.B. Bezerra et al.

where NL is the total number of legitimate messages, and NS the total number
of spams.

With this, WAcc treats false positive λ times more costly than false negatives.
In other words, when a false positive occurs it is counted as λ errors; and when it
is classified correctly, it counts λ successes [22]. Nevertheless, as suggested by the
same author, to avoid some problems with high values of WAcc, we will adopt
the baseline versions of weighted accuracy and weighted error rate as depicted
in Eq. 7 and the total cost ratio (TCR) as another measurement of the spam
filtering effects, shown in Eq. 8. Note that the baseline here is the case where
no filter is present: legitimate messages are never blocked and spams can always
pass the filter.

WAccb =
λ.NL

λ.NL + NS
, WErrb =

NS

λ.NL + NS
(7)

TCR =
WErrb

WErr
(8)

TCR seems to be a suitable performance indicator and it was used, as said
before, to control the convergence criterion of the antibody network. Large TCR
values indicate better performance. In cases where TCR ≤ 1 , taking on the
baseline (not using any filter) is better.

Androutsopoulos et al. [4] proposes three different values for λ: λ = 1, 9, and
999. When λ is set to 1, spam and legitimate mails are weighted equally; when λ
is set to 9, a false positive is penalized nine times more than a false negative; for
the setting of λ = 999, more penalties are put on false positive. Such a high value
of λ is suitable for scenarios where messages marked as spam are deleted directly.
In this work, the values adopted to λ are 9 and 999, since the main difference
between spam filtering and general text categorization task is the weight given
to the two types of error.

If the cost is proportional to wasted time, an intuitive meaning for TCR is
the following: it measures how much time is wasted to delete manually all spam
messages when no filter is used (NS), compared to the time wasted to delete
manually any spam messages that passed the filter plus the time needed to
recover from mistakenly blocked legitimate messages [4].

6 Experiments

6.1 Experimental Results

To obtain the values of SP, SR, WAcc and TCR, 30 runs were performed using a
ten-fold cross-validation method, which makes our results less prone to random
variation. In each run, the entire data set was split in ten subsets: nine for train-
ing and one for testing. It is important to note that in ten-fold cross validation
experiments, as suggested in [4], TCR is computed as average of WErrb divided
by the average WErr and not as the average of the TCR’s of the individual
folds, as this effectively ignores folds with TCR � 1.
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The well-known näıve Bayes was chosen to be the filter for comparison due
to its wide application in the context of spam filtering [1,4,6].

In Tables 1 and 2, the performance indexes for näıve Bayes and SRABNET are
presented. The values are the average of the 30 runs and the symbol (±) means the
standard deviation. As the entire dataset is mixed at the beginning of the algorithm
to promote ten-fold cross validation, there is nothing to hinder that at least one fold
have only legitimate or only spam in it. In this case, we did not use these values to
compute the average. It is important to stress that this ‘peculiarity’ just occurswith
the näıve Bayes filter. This occurs mainly because the näıve Bayes filter uses only
the samples from training set to calculate the probability of a sample be a spam or
not. With this, if the training set have just legitimate messages the value attributed
to the probability of a message be spam is strongly affected. In this scenario all the
messages will be classified as legitimate.

Table 1. Performance Measures with λ = 9

Filter Spam Recall (%) Spam Precision (%) WAcc (%) TCR

näıve Bayes 14.17 73.05 34.45 ± 1.71 1.08 ± 0.4
SRABNET 85.90 97.37 97.18 ± 0.14 2.85 ± 0.02

Table 2. Performance Measures with λ = 999

Filter Spam Recall (%) Spam Precision (%) WAcc (%) TCR

näıve Bayes 14.38 72.16 35.61 ± 1.77 0.05 ± 0.06
SRABNET 60.21 97.73 98.38 ± 0.09 0.07 ± 0.001

For λ = 999, both filters score TCR < 1, this is probably due to the very high
weight given to false positives (L → S). As a result, none of the filters manages to
eliminate these errors completely. That is, higher values of λ benefits the baseline
filter (without one), once that no false positives occurs. Despite theses results,
SRABNET still remains as the best filter keeping into consideration WAcc and
even TCR.

For λ = 9, both filters reach a TCR > 1, with the antibody network clearly
overcoming the näıve Bayes filter. This is mainly due the fact that the immune
algorithm does not make any assumption on the independence of the attributes,
allowing a better positioning of the prototypes (antibodies) on the feature space.

The poor performance of the näıve Bayes in all values of λ can be attributed
to the method applied here to reduce dimensionality. The concise information
that remains in the feature vector, may probably deceive the Bayesian classifier.

6.2 Future Work

Further important analysis includes corpora where the data (messages) have a
temporal sequence. Some experiments, with artificial datasets have already been
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Fig. 4. Temporal behavior of SRABNET when applied to a dynamic environment,
with more and more samples arriving along time

done as shown in Fig. 4. This dataset was used by Knidel et al. in [14] to illustrate
the robustness of the algorithm on classes with non-convex distributions, but in
this case we are trying to illustrate the temporal behavior of the messages. In
this pictorial example, the messages are being described solely by two numerical
attributes. To reproduce the behavior of SRABNET in Fig. 4, in what we call a
dynamic environment, we determined a sequence of steps. In each iteration the
algorithm takes samples to from all the previous steps to training and test on the
next step samples of the dataset. Each time a new test is performed, the training
set grows with the addition of the previous step samples and the algorithm is
retrained. Intuitively , we can realize that the larger the dataset, the lower the
value of the error rate on the test data. However, the generalization capability of
the model to unseen samples reduces if it becomes too specialized (overtrained).

In the context where the data changes over time, a good model is the one
that can track the changes of distribution, or in this case the change of concept,
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of the data that arrives. As a consequence, the model built on old data, in
some cases inconsistent, becomes inappropriate to the new data. This problem
is known as conceptual drift and must be the main concern when synthesizing
a model from dynamic data [2]. Secker et al. [13] had already proposed the
use of an artificial immune system for this task, somehow comparable with the
perfomance produced by the näıve Bayes approach.

7 Conclusions

In this paper we have proposed the application of a supervised antibody network
called SRABNET for spam filtering. Based on the use of a weighted index,
total cost ratio (TCR), to control the convergence window we obtained a better
performance with a robust network. Then, the use of SRABNET as a spam filter
instead of näıve Bayes has shown to be an interesting choice for the user.

Even with the high accuracy of the antibody network, its performance can
be improved by adding some distinctive and domain specific features in the
representation as performed by Sahami et al. [5]. In [1] a comparison of meth-
ods for feature selection is presented, including information gain (IG), Mutual
Information (MI) or Chi squared (χ2). We believe that the use of advanced fea-
ture selection techniques will accentuate the discriminant capability of filters for
spam.
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